Characterisation and preliminary results on 3D trench pixel sensors irradiated up to 10^{17} 1 MeV n_{eq} cm⁻²

19th Trento Workshop on Advanced Silicon Radiation Detectors

M. Addison, F. Borgato, A. Cardini, G.M. Cossu, G.-F. Dalla Betta, M. Garau, L. La Delfa, A. Lai, A. Lampis, A. Loi, M. Obertino, G. Simi, S. Vecchi, <u>M. Verdoglia</u>

Introduction: LHCb detector Upgrade II

- One of the 4 major experiment at CERN Planned upgrade for the Phase II in 2035
 - to cope with the increase of luminosity

Single-arm **forward** spectrometer

Introduction: LHCb detector Upgrade II, timing

VErtex **LO**cator requirements for the Run 5 and Run 6

(for the entire duration of the experiment)

Introduction: LHCb & **UII Detector**

VErtex **LO**cator, new technologies are needed in order to *maintain* the current primary vertices reconstruction efficiency also at high luminosity:

3D silicon pixel with timing capabilities

- Spatial resolution (pitch~50µm)
- Timing resolution (~50ps)
- Radiation hardness (~5x10¹⁶ fluence)

TimeSPOT project

- 3D silicon pixel technology is suitable for its radiation hardness
- Geometry optimisation lead to excellent timing performance
- TimeSPOT 3D Trench silicon pixel

TimeSPOT: sensor characterisation

Two batches produced by Fondazione Bruno Kessler (Trento, Italy), of which non-irradiated and irradiated up to 2.5×10^{16} 1 MeV n_{eq} cm⁻² sensors were characterised (Irradiation of TimeSPOT sensors with neutrons has been done by the TRIGA Mark II reactor of the Jožef Stefan Institute in Ljubljana, Slovenia)

Custom-made front-end electronics boards featuring a two-stage transimpedence amplifier made with fast SiGe BJTs, designed and produced to test TimeSPOT 3D trench sensors timing performance

https://iopscience.iop.org/article/10.108 8/1748-0221/18/01/P01039/meta

TimeSPOT: sensor characterisation @ test beam

Previous irradiating campaign up to 2.5×10^{16} of fluence at test beam (2022) shown excellent timing resolution and efficiency:

SETUP at 2022 test beam

Characterisation of 10^{17} 1 MeV n_{eq} cm⁻² irradiated pixel: setup

⁹⁰Sr radioactive source measurements in laboratory in order to validate performances of highly irradiated sensors:

Setup:

- DUT
- ⁹⁰Sr radioactive source
- Climatic chamber at **T** = **-20°C**
- MCP-PMT as time reference (ref)
- Oscilloscope

Measurements:

- Signal amplitude
- Time resolution

Amplitude distribution of 10^{17} 1 MeV n_{eq} cm⁻² irradiated pixel

Characteristic events @ V_{BIAS} = -140 V

- Trigger in coincidence DUT/MCP-PMT
- Threshold selected to eliminate noise contributions

Highly irradiated TimeSPOT sensors can be used as particle detector

Timing of 10^{17} 1 MeV n_{eq} cm⁻² irradiated pixel

 $\Delta t = t_{ref} - t_{DUT}$, t = Time of Arrival (ToA) calculated via Software Constant-Fraction-Discrimination (CFD) method:

Time resolution of 10^{17} 1 MeV n_{eq} cm⁻² irradiated pixel

Time resolution:

Characteristic time distribution of 3D trench silicon pixels presents an asymmetric shape:

Sum of two gaussian fit function

single pixel @ V_{BIAS} = -140 V

Time resolution Vs V_{BIAS} in laboratory

Time resolution σ_{eff} as a function of V_{BIAS} single pixel using ⁹⁰Sr source in Lab

Time resolution Vs $\mathrm{V}_{\mathrm{BIAS}}$, laboratory Vs test beam

Time resolution σ_{eff} as a function of V_{BIAS} single pixel comparison between Lab and test beam, expected similar results for 10^{17} 1 MeV n_{eq} cm⁻² irradiated pixel

Efficiency estimate of 10^{17} 1 MeV n_{eq} cm⁻² irradiated pixel

Efficiency estimate:

- <u>Previous measurements</u> shown correlation between counting rate per time unit as a function of V_{BIAS} using ⁹⁰Sr source and *efficiency* at test beam "plateau"
- <u>New results</u> shows that 10¹⁷ 1 MeV n_{eq} cm⁻² irradiated pixel do not reach the "plateau", in-pixel spatial charge collection studies are ongoing

Ongoing Activities

In-pixel laser measurements in laboratory in order to compare performances between highly irradiated sensor and not irradiated :

Setup:

- Piezoelectric stages for micrometric movements
- Triplet Fiber Optic Collimator and focussing lens, spot FWHM~3µm
- Laser FWHM~50ps (time reference) $\lambda = 650$ nm
- Oscilloscope
- Climatic Chamber

Measurements:

- Amplitude map
- Timing map
- Efficiency map

setup validation using not irradiated pixel

Ongoing Activities

Study in-pixel **signal amplitude** and timing distributions using *laser* Preliminary Amplitude and ToA distributions using a *not irradiated pixel*

Ongoing Activities

Study in-pixel signal amplitude and **timing** distributions using *laser* Preliminary Amplitude and ToA distributions using a *not irradiated pixel*

Excellent spatial resolution Excellent time resolution

Summary

Preliminary results on highly irradiated (10¹⁷ 1 MeV n_{eq} cm⁻²) TimeSPOT 3D trench silicon sensors in the laboratory using ⁹⁰Sr radioactive source

- Highly irradiated sensors still work as particle detector
- Excellent timing performance in laboratory $\sigma_{eff}^{}\sim$ 20 ps, in line with previous results

Next steps:

- Measure timing, signal amplitude and efficiency maps using laser
- Characterisation at test beam foreseen in May 2024 at SPS

Thank you !

Backup Slides

Timing resolution fit function

Time resolution:

Characteristic time distribution of 3D trench silicon pixels presents an asymmetric shape: Sum of two gaussian fit function

$$\sigma_{\text{eff}}^2 = f_1(\sigma_1^2 + \mu_1^2) + (1 - f_1) \cdot (\sigma_2^2 + \mu_2^2) - \mu^2$$
$$\mu = f_1\mu_1 + (1 - f_1) \cdot \mu_2$$

single pixel (2010) $O_{BIAS} = -140 V$

$$\sigma_{eff}$$
 = 20 ± 1.3 ps

CFD

Constant Fraction Discrimination method:

- The algorithm interpolate the waveform in order to add more points
- ToA is the time the signal reaches 35% of maximum amplitude

This method allow to minimise the errors caused by the *time walk*

Previous studies on time resolution estimation have shown which algorithms to use

