RFQ: basic considerations, achievements and criticalities

Aurélien Ponton

European Spallation Source Accelerator Division

ESS Warm Linac Meeting, July 6th 2011, INFN-LNS, Catania, Italy

I

Outline

Beam dynamics RF cavity design The head bone's connected to the neck bone Conclusions

Outline

5 Conclusions

Beam dynamics RF cavity design The head bone's connected to the neck bone Conclusions

Forewords

The ESS linac has to provide a high power proton beam with a very high availability (ESS total availability > 95 %) ⇒ The design has to be driven by the overall reliability

Requirements

- lessons learnt from past and current projects
- labs knowlege and know-how
- margin/safety factor, conservative design

EUROPEAN SPALLATION

4/24

synergies

• • • •

Beam dynamics RF cavity design The head bone's connected to the neck bone Conclusions

Forewords

The ESS linac has to provide a high power proton beam with a very high availability (ESS total availability > 95 %) ⇒ The design has to be driven by the overall reliability

Requirements

- lessons learnt from past and current projects
- Iabs knowlege and know-how
- margin/safety factor, conservative design

EUROPEAN SPALLATION

4/24

synergies

• . . .

Introduction Beam dynamics RF cavity design

The RFQ design process

- voltage law
- peak surface

- vacuum ports
- RF coupling

• . . .

EUROPEAN SPALLATION SOURCE

Introduction Beam dynamics RF cavity design

The RFQ design process

Beam dynamics

- voltage law
- peak surface fields
- RFQ length

o . . .

vacuum ports

RF coupling

• . . .

EUROPEAN SPALLATION SOURCE

The RFQ design process

Beam dynamics

- voltage law
- peak surface fields
- RFQ length

o . . .

RF cavity design

tuners

- vacuum ports
- RF coupling

Θ...

Thermo-mechanical calculations

 \rightarrow internal Saclay kick-off meeting on July 8th 2011

Beam dynamics \Rightarrow Radio-frequency \Rightarrow Thermo-mechanica

EUROPEAN SPALLATION SOURCE

The RFQ design process

Beam dynamics

- voltage law
- peak surface fields
- RFQ length

o . . .

RF cavity design

tuners

- vacuum ports
- RF coupling

Θ...

Thermo-mechanical calculations

 \rightarrow internal Saclay kick-off meeting on July 8th 2011

SPALLATION SOURCE 5/24

EUROPEAN

The RFQ design process

Beam dynamics

- voltage law
- peak surface fields
- RFQ length

o . . .

RF cavity design

tuners

- vacuum ports
- RF coupling

Θ...

Thermo-mechanical calculations

 \rightarrow internal Saclay kick-off meeting on July 8th 2011

Beam dynamics \rightleftharpoons Radio-frequency \rightleftharpoons Thermo-mechanical

5/24

EUROPEAN SPALLATION SOURCE

Beam dynamics RF cavity design The head bone's connected to the neck bone Conclusions Design choices Synergies Main results

Outline

Design choices Synergies Main results

Pole tips design strategy

The ESS RFQ: acceleration of 50 mA (upgradable to 75 mA) proton beams from 75 keV to 3 MeV

Criticalities

- Complex object: tuning, sparking issues, ...
- Impact the beam behavior throughout the full length of the linac

Pole tips design driven by:

- surface electric field below $K_p = 1.8$
- overdesign for 100 mA
- maximize the transmission:
 - long pure bunching section, adiabaticity of the process
 - Iongitudinal acceptance
 - focalization forces
- integrate the mechanical and RF designs in the early stage of the BD

Beam dynamics RF cavity design The head bone's connected to the neck bone Conclusions Design choices Synergies Main results

Voltage law

Figure: Inter-vane voltage and its derivative.

Variable inter-vane voltage

- BD goal: maintain the current limits while keeping large the value of the minimum aperture
- RF constraints:
 - boundary conditions
 frequency shift:

(a)

$$\frac{\Delta f(z)}{f_0} = \frac{1}{2} \left(\frac{\lambda}{2\pi}\right)^2 \frac{1}{V(z)} \frac{\partial^2 V(z)}{\partial z^2}$$

8/24

Beam dynamics RF cavity design The head bone's connected to the neck bone Conclusions Design choices Synergies Main results

Voltage law

Figure: Inter-vane voltage and frequency shift.

Variable inter-vane voltage

- BD goal: maintain the current limits while keeping large the value of the minimum aperture
- RF constraints:
 - boundary conditions
 frequency shift:

$$\frac{\Delta f(z)}{f_0} = \frac{1}{2} \left(\frac{\lambda}{2\pi}\right)^2 \frac{1}{V(z)} \frac{\partial^2 V(z)}{\partial z^2}$$

8/24

Design choices Synergies Main results

The pole radius of curvature

Extrapolation of the Los Alamos tables

- first study with $\rho/R_0 = Const$.
- constant ρ is preferred for mechanical considerations (machining)
- Pb: some parameters used for generating the vane geometry can not be calculated from the Los Alamos tables (outside range)

→ Can we extrapolate the Los Alamos tables? Yes: validated by 3D calculations

Figure: The IPHI RFQ.

Design choices Synergies Main results

The pole radius of curvature

Extrapolation of the Los Alamos tables

- first study with $\rho/R_0 = Const$.
- constant ρ is preferred for mechanical considerations (machining)
- Pb: some parameters used for generating the vane geometry can not be calculated from the Los Alamos tables (outside range)
- \rightarrow Can we extrapolate the Los Alamos tables?

Yes: validated by 3D calculations

Figure: Field enhancement factor.

Design choices Synergies Main results

The pole radius of curvature

Extrapolation of the Los Alamos tables

- first study with $\rho/R_0 = Const$.
- constant ρ is preferred for mechanical considerations (machining)
- Pb: some parameters used for generating the vane geometry can not be calculated from the Los Alamos tables (outside range)
- \rightarrow Can we extrapolate the Los Alamos tables?

Yes: validated by 3D calculations

Figure: Field enhancement factor.

Syneraies

The pole radius of curvature

Extrapolation of the Los Alamos tables

- first study with $\rho/R_0 = Const$.
- constant ρ is preferred for mechanical considerations (machining)
- Pb: some parameters used for generating the vane geometry can not be calculated from the Los Alamos tables (outside range)
- \rightarrow Can we extrapolate the Los Alamos tables?

Yes: validated by 3D calculations

Figure: Killpatrick limit.

N DN

Design choices Synergies Main results

The pole radius of curvature Comparative study

Results for I = 100 mA and 0.25 π .mm.mrad Waterbag input beam

Figure: Power consumption.

- power consumption: 135 kW/m (with $R_{\rm sh} = 80 \text{ k}\Omega.\text{m}$)
- Itransverse emittance
- Iongitudinal emittance
- Itransmission: Max. for ρ = Const and L 2 5 m

Design choices Synergies Main results

The pole radius of curvature Comparative study

Results for I = 100 mA and 0.25 π .mm.mrad Waterbag input beam

Figure: Power consumption.

- power consumption: 135 kW/m (with $R_{\rm sh} = 80 \text{ k}\Omega.\text{m}$)
- Itransverse emittance
- Iongitudinal emittance
- transmission: Max. for ρ = Const and L 2 5 m

10/24

Design choices Synergies Main results

The pole radius of curvature Comparative study

Results for I = 100 mA and 0.25 π .mm.mrad Waterbag input beam

Figure: Transverse emittance.

- power consumption: 135 kW/m (with $R_{\rm sh} = 80 \text{ k}\Omega.\text{m}$)
- Itransverse emittance
- longitudinal emittance
- Itransmission: Max. for ρ = Const and L ~ 5 m

Design choices Synergies Main results

The pole radius of curvature Comparative study

Results for I = 100 mA and 0.25 π .mm.mrad Waterbag input beam

Figure: Longitudinal emittance.

- power consumption: 135 kW/m (with $R_{\rm sh} = 80 \text{ k}\Omega.\text{m}$)
- Itransverse emittance
- Iongitudinal emittance
- Itransmission: Max. for ρ = Const and L ~ 5 m

Design choices Synergies Main results

The pole radius of curvature Comparative study

Results for I = 100 mA and 0.25 π .mm.mrad Waterbag input beam

Figure: Transmission.

- power consumption: 135 kW/m (with $R_{\rm sh} = 80 \text{ k}\Omega.\text{m}$)
- transverse emittance
- Iongitudinal emittance
- transmission: Max. for ρ = Const and L ≃ 5 m

かへで 10/24

Design choices Synergies Main results

The pole radius of curvature Comparative study

Results for I = 100 mA and 0.25 π .mm.mrad Waterbag input beam

Figure: ρ as a function of vane length.

- power consumption: 135 kW/m (with $R_{\rm sh} = 80 \text{ k}\Omega.\text{m}$)
- Itransverse emittance
- Iongitudinal emittance
- transmission: Max. for ρ = Const and L ~ 5 m

Pole radius of curvature: $\rho = 3 \text{ mm}$

10/24

Beam dynamics RF cavity design The head bone's connected to the neck bone Conclusions Design choices Synergies Main results

Geometry

RFQ pole geometry

- vane length: 4.95 m
- constant pole radius of curvature: ρ = 3 mm
- inter-vane voltage: from 80 to 120 kV
- max. modulation factor: m < 2.06
- min. aperture: *a* > 3 mm
- 5 segments of \sim 1 m each

Figure: Some RFQ parameters.

Design choices Synergies Main results

Dynamics

At the RFQ output:

- no emittance growth is experienced
- very few particles are transmitted without the correct energy

Intensity (mA)	50	75	100
Trans. Em. growth [%]	~ 1	\sim 1	\sim 1
Long. Em. [°/MeV]	0.12217	0.1311	0.15611
Ac. Trans. [%]	99.59	98.87	97.56
Non Ac. Trans [%]	< 1	< 1	< 1
Est. klystron power [MW]	1.05	1.14	1.24

Table: Emittances and transmission (0.25 π .mm.mrad-Waterbag input beam).

<u>Rmk:</u> Estimated power with $P_k = 1.3 \times \left(\frac{R_{sh}}{2} \int V^2(z) dz + P_{beam}\right)$ \rightarrow 3D objects to be included

2D calculations 3D calculations

Outline

EUROPEAN SPALLATION

2D calculations 3D calculations

2D frequency and voltage law

- 3D RFQ frequency is set to 346 MHz without tuners
- position of the cavity back plane used to fit the 2D frequency law
- back plane width always grater than 86.9 mm
 → enough space to accommodate the 82 mm bore diameter tuners
- ~ 1 cm excursion of the back plane with flat zones for pumping ports and tuners

2D calculations 3D calculations

2D frequency and voltage law

- 3D RFQ frequency is set to 346 MHz without tuners
- position of the cavity back plane used to fit the 2D frequency law
- back plane width always grater than 86.9 mm
 → enough space to accommodate the 82 mm bore diameter tuners
- ~ 1 cm excursion of the back plane with flat zones for pumping ports and tuners

Figure: 2D cross section of a quadrant.

2D calculations 3D calculations

2D frequency and voltage law

- 3D RFQ frequency is set to 346 MHz without tuners
- position of the cavity back plane used to fit the 2D frequency law
- back plane width always grater than 86.9 mm
 → enough space to accommodate the 82 mm bore diameter tuners
- ~ 1 cm excursion of the back plane with flat zones for pumping ports and tuners

Figure: Position of the back plane vs. longitudinal axis.

REO

2D calculations 3D calculations

End cells

Calculation tools: HFSS, Comsol and Opera

Figure: Vanes geometry at the RFQ entrance.

- RF stabilization: dipolar and quadrupolar rods
- mechanical design
- peak surface fields
- power deposition: \sim 80 W/cm² and \sim 150 W/cm²at the entrance and at the exit respectively

(a)

2D calculations 3D calculations

End cells

Calculation tools: HFSS, Comsol and Opera

Figure: Vanes geometry at the RFQ exit.

- RF stabilization: dipolar and quadrupolar rods
- mechanical design
- peak surface fields
- power deposition: \sim 80 W/cm² and \sim 150 W/cm²at the entrance and at the exit respectively

(a)

3D calculations

RF coupling

Calculation tools: HFSS and Comsol

Figure: RF loop.

- RF loop (Spiral 2 and TRASCO)
- 4 couplers ×300 kW for 33.8 mm penetration (more penetration results in more coupling)
- voltage on axis unperturbed $(< 5.10^{-3})$
- final design needs a complete power evaluation

• • • • • • • • • • • •

2D calculations 3D calculations

RF coupling

Calculation tools: HFSS and Comsol

Figure: RF loop.

- RF loop (Spiral 2 and TRASCO)
- 4 couplers ×300 kW for 33.8 mm penetration (more penetration results in more coupling)
- voltage on axis unperturbed (< 5.10⁻³)
- final design needs a complete power evaluation

3D calculations

Vacuum ports

Calculation tools: HFSS and Comsol

Figure: Vacuum port.

- validated CEA design for LINAC 4 RFQ
- \sim 40 ports necessary
- penetration depth: very good agreement between calculations and measurements for the LINAC 4 RFQ

power deposition

2D calculations 3D calculations

Vacuum ports

Calculation tools: HFSS and Comsol

Figure: Vacuum port.

- validated CEA design for LINAC 4 RFQ
- $\bullet \sim 40$ ports necessary
- penetration depth: very good agreement between calculations and measurements for the LINAC 4 RFQ

power deposition

2D calculations 3D calculations

Vacuum ports

Calculation tools: HFSS and Comsol

Figure: Vacuum port.

- validated CEA design for LINAC 4 RFQ
- $\bullet \sim 40$ ports necessary
- penetration depth: very good agreement between calculations and measurements for the LINAC 4 RFQ
- power deposition

2D calculations 3D calculations

Tuners

Calculation tools: Comsol and the 4-wire-transmission line model

- 15 (×4 quadrants) tuners equally spaced by 328 mm
- each 80 mm diameter tuner inserted in a 82 mm diameter boring
- tuner sensitivity and power deposition vs. penetration depth
- 4-wire-transmission line model:
 - RF stabilization
 - extreme position of tuners to correct potential mechanical errors

Figure: Tuner.

2D calculations 3D calculations

Tuners

Calculation tools: Comsol and the 4-wire-transmission line model

- 15 (×4 quadrants) tuners equally spaced by 328 mm
- each 80 mm diameter tuner inserted in a 82 mm diameter boring
- tuner sensitivity and power deposition vs. penetration depth
- 4-wire-transmission line model:
 - RF stabilization
 - extreme position of tuners to correct potential mechanical errors

Figure: Magnetic field on tuner #15 for 358.74 MHz.

2D calculations 3D calculations

Tuners

Calculation tools: Comsol and the 4-wire-transmission line model

- 15 (×4 quadrants) tuners equally spaced by 328 mm
- each 80 mm diameter tuner inserted in a 82 mm diameter boring
- tuner sensitivity and power deposition vs. penetration depth
- 4-wire-transmission line model:
 - RF stabilization
 - extreme position of tuners to correct potential mechanical errors

Figure: The 4-wire-transmission line.

₹Q

Outline

What is the best emittance to inject in the RFQ?

 \longrightarrow We have studied the *transmission and the emittance evolution* for different input beam transverse emittances.

Figure: Transmission VS. input trans. emittance.

Fransmission

- very sensitive to the input distribution
- remains very high over the all range

Emittances

Avoiding resonance exchanges and keeping the adiabaticity of the acceleration and bunching process leads to choose at the entrance of the RFQ: $\epsilon_{n,RMS} = 0.20 \ \pi$.mm.mrad

What is the best emittance to inject in the RFQ?

 \longrightarrow We have studied the *transmission and the emittance evolution* for different input beam transverse emittances.

Figure: Transmission VS. input trans. emittance.

Transmission

- very sensitive to the input distribution
- remains very high over the all range

Emittances

Avoiding resonance exchanges and keeping the adiabaticity of the acceleration and bunching process leads to choose at the entrance of the RFQ: $\epsilon_{n,RMS} = 0.20 \ \pi$.mm.mrad

What is the best emittance to inject in the RFQ?

 \longrightarrow We have studied the *transmission and the emittance evolution* for different input beam transverse emittances.

Figure: Emittance evolution VS. input trans. emittance.

Transmission

- very sensitive to the input distribution
- remains very high over the all range

Emittances

Avoiding resonance exchanges and keeping the adiabaticity of the acceleration and bunching process leads to choose at the entrance of the RFQ: $\epsilon_{n,RMS} = 0.20 \ \pi$.mm.mrad

RFQ as a chopper?

See "RFQ input to MEBT", presented at the ESS-Bilbao meeting on MEBT and Spoke Resonators, UPV/EHU, May 4-5 2011

Figure: Current and energy vs. field availability.

Consequences:

- for the RFQ: damage due to the localization of the losses?
- for the MEBT: should not be a concern before the fields have reached 80 % availability

• • • • • • • • • • • • •

Outline

Conclusions

- Seam dynamics study is finalized → ESS milestone on the pole tips geometry to be delivered this summer
- In the second second
- Thermo-mechanical calculations to be launched in September 2011
 - \rightarrow ESS milestone to be delivered early 2012

ESS RFQ design progress is strengthened by a good collaboration within the CEA-Saclay team: vicinity and commitment of people in different fields

ESS RFQ Saclay design meetings held on a regular basis

23/24

< ロ > < 同 > < 回 > < 回 >

Acknowledgment

Many thanks to the CEA-Saclay team for its fruitful help in the preparation of this talk and for providing me with numerous images and graphs: O. Delferrière, M. Desmons, R. Duperrier, A. C. France, O. Piquet and

D. Delferriere, M. Desmons, R. Duperrier, A. C. France, O. Piquet and B. Pottin

