Baseline11:

Updating the linac design
Role of the warm section

Steve Peggs

What is "Baseline11"?

"Baseline11" will be a snapshot of the ESS design, including Target, Instruments, buildings et cetera, taken (~)Dec 31, 2011

It will be a (quite) comprehensive, complete & self-consistent technical reference, including:

- Conceptual Design Report (pointing at Technical Notes)
- Drawings & figures
- Parameter lists (with updates) & tables
- Change Control Board documentation
- Linac layout & optics, end-to-end
- New BLED database
- et cetera

CDR Ch 4: Accelerator CCB request a first draft by Sept 23!

4	Accelerator	Lindroos
	Accelerator parameters and design choices	Rathsman
	Beam Physics	Danared
	Beam-line lattice and dynamics	
	Tolerances and correction systems	
	Beam power limitations	
	Operational considerations and reliability	
	Beam losses and collimation	
	Normal conducting linac	Gammino
	Spoke superconducting linac	Bousson
	Elliptical superconducting linac	Devanz
	High Energy Beam Transport	Pape-Møller
	RF systems	Ruber
	Power generation	
	Power distribution	
	Low-Level RF	
	Normal-conducting linac	
	Superconducting linac	
	Higher Order Modes	Molloy
	Cryogenic systems	Hees
	Cryomodules	
	Vacuum systems	Hees
	Beam instrumentation	Jansson
	Magnet systems	
	[quads, dipole corrs, HTS bends]	
	Potential upgrades	Lindroos

Parameters

5	MW	beam power
2.5	GeV	protons (H+)
2.86	ms	pulses
14	Hz	rep rate
704	MHz	RF frequency
< 1	W/m	beam losses
> 95	%	availability

http://esss.se/linac/Parameters.html

Ongoing evolution

ESS Parameter Tables

Table

High level parameters Lattice and Accelerator Science Ion source Low Energy Beam Transport Radio Frequency Quadrupole Medium Energy Beam Transport Drift Tube Linac Spoke resonators Elliptical cavity linac, low beta Elliptical cavity linac, high beta **High Energy Beam Transport** Target Infrastructure Services **RF** Systems

Status Table owner Date 18-Apr-11 Active CCB 22-Jun-11 Active H. Danared 16-Dec-10 Active L. Celona 16-Dec-10 Active L. Celona 15-Dec-10 Active B. Pottin 15-Dec-10 Active I. Bustinduy 1-Dec-10 Active A. Pisent 16-Dec-10 Active S. Bousson 16-Dec-10 Active G. Devanz 16-Dec-10 Active G. Devanz 17-Nov-10 Active S. Pape-Møller 22-Nov-10 Active S. Peggs 22-Nov-10 Active J. Eguia 22-Nov-10 Active R. Ruber

Steve Peggs

....of

- 1) values,
- 2) table ownership,
- 3) validators
- 4) [list of tables]
- 5) [CCB processes]

Tables (and their parameters) can have the status "Draft", "Active", or "Obsolete"

Template parameter table (xls).

End-to-end location - fixed!

<u>Note:</u> SWEREF coordinates

Ref.:1 Accelerator start X: 134692.1 Y: 6179297.63 Ref.:2 Target station center X: 134233.00 Y: 6179048.00

SOURCE
 SOURC

ŝ

4

Ϋ́

9

EUROPEAN

SPALLATIO

(Cold) slots being established

	Low Beta Cryomodule	(Table Owner name)					date	2011-06-26-
	Parameter	Unit	Value	Integrated Value	Status	Date	Validator	Comment
	Low beta cryomodule flange to Quadrupole	mm	250.000	250.000		2011-06-22	-	
Block of	Half_Quad (H/V)	mm	200.000	- 2011-06-27-		-		
One	Steerer (H/V)	mm	0.000	2011-06-27-		-		
Mechanical	BPM (H & V)	mm	0.000	-		2011-06-27	-	Five-Cell/Geometric Beta = 0.70
element	Half_Quad (H/V)	mm	200.000	650.000		2011-06-27	-	
	Quadrupole to Cavity Iris	mm	400.000	1050.000		2011-06-22	-	
	Cavity active	mm	744.778	1794.778		2011-06-22	-	
	Cavity Iris to Cavity Iris	mm	400.000	2194.778		2011-06-22	-	
	Cavity active	mm	744.778	2939.557		2011-06-22	-	
	Cavity Iris to Cavity Iris	mm	400.000	3339.557		2011-06-22	-	
	Cavity active	mm	744.778	4084.335		2011-06-22	-	
	Cavity Iris to Cavity Iris	mm	400.000	4484.335		2011-06-22	-	
	Cavity active	mm	744.778	5229.114		2011-06-22	-	
	Cavity Iris to Quadrupole	mm	400.000	5629.114		2011-06-22	-	
000	Half_Quad (V/H)	mm	200.000	6029.114		2011-06-27	-	
Mechanica element	Steerer (V/H)	mm	0.000			2011-06-27	-	
	BPM (H & V)	mm	0.000			2011-06-27	-	
	Half_Quad (V/H)	mm	200.000			2011-06-27	-	
	Quadrupole to low beta cryomodule flange	mm	250.000	6279.114		2011-06-22	-	
	Center to Center of Cavity	mm	1144.778	1144.778		2011-06-22	-	

A slot is a removable, replacable composite object

.... or (ambiguously?) the place where one would go

Slots eventually become instantiated,

- each with its own warts, realistic errors, bar codes, et cet

WARM "slottification" is also necessary

- but is unlikely to be complete in 2011?

Bunch time structure (straw)

EUROPEAN SPALLATION

SOURCE

MEBT Action Items, May 4

	Date	Who	Action	Comment
1	Done	All	LEBT includes a slow chopper	
2	Done	All	Bilbao designs RF buncher	Bustinduy
3	Done	All	MEBT includes adjustable collimator(s)	Commiss. tool
4	May	CP/SP	Propose porting RAL MEBT design to ESS	Talk to UK/RAL
5	May+	Bustinduy	Develop MEBT parameter table	
6	June	Peggs	Write a TN on time structure	Define author list
7	June	Plostinar	Summarize chopping options. TN.	Rise times. RFQ
8	June	Bustinduy	Establish MEBT diagnostics w Jansson	CAS. DITANET
9	July	Gammino	Warm linac workshop	
10	July	Iker?	Evaluate J-PARC (& other?) quad technols.	
11	Sept	Ponton	Study LEBT w slow chopping	Rise/fall times?
12	Dec	Comunian	Assemble integrated layout, IS to DTL_end	To Danared
13	Dec	Danared	End-to-end "emittance budget" table	RMS
14	?	BILBAO?	Analyse losses: need MEBT fast chopper?	

MEBT Workshop Recommendations

1) Discuss and adopt the "Proposed Spoke Actions", after presentation of the same by Bousson & Peggs in CCB & TB meetings, May 9 & 13.

2) Avoid any linkage between Bilbao and Lund accelerator schedules, eg in spoke resonator testing with beam.

3) Explore, by one-on-one visits from "Lund" to Bilbao, potential synergies - eg LLRF, Controls, beam diagnostics - in addition to current ADU and P2B thinking.

4) Consider, without urgency, DTL synergies between Bilbao and Lund.

5) Mats and Alan Letchford discuss (eg at CAS school) strengthening ties with RAL & Astec South by focusing on the topic of porting the RAL MEBT design to ESS.

6) Prioritize evaluating the need, or lack of need, for a fast chopper in the MEBT.

Controls for Warm Linac Systems (all words by Garry Trahern)

July 5 email to Peggs:

"We only want to emphasize the need for controls integration early on for hardware and software."

- Control Box = Control System
 - All the infrastructure, services, support ...
- We are ready to integrate!
 - We have the budget and the power
- Ready when you are!

Summary

- 1. Baseline11 is due Dec 31 this year (first draft Sept 23 !)
 - comprehensive, complete & self-consistent
 - CDR with supporting documentation in appropriate formats
- 2. Warm parameters are due to be updated,
 - to be validated "soon" by ADU Technical Board
- 3. Need "end-to-end"
 - warm layout & optics
 - warm simulations
 - Workshop (see Danared)
 - [warm slots, incomplete in 2011?]
- 4. Action Items
 - Follow up on MEBT workshop
 - New ones from this meeting?
- 5. Control Box: "Ready when you are"

Backup slides

Time structure

The "natural" rise and fall times out of the ion source need chopping in the LEBT by an order of magnitude.

2) into RFQ

Chopped rise and fall times into the RFQ are ~100 ns ??

3) into MEBT

RFQ bunches the beam into narrower bunches than shown here. - What length ??

MEBT chops microsecond notches into individual macropulses (if asked)

- this allows strong ferrite kickers to ramp up/down
 - provides flexibility, eg for parasitic extraction of 1% of the beam
- bunch-by-bunch chopping is not necessary
- A "supercyle" of N macropulses repeats itself ad infinitutm
 - an identical "strength vector" applies to every macropulse
 - the supercycle is occasionally tuned