Calorimeter energy and time calibration in extracted position using CRY dataset

P. Fedeli, S. Giovannella

(INFN LNF)

Mu2e INFN Meeting 18 December 2023

Calorimeter Energy/Time Calibration

Cosmic Ray events will be used during the commissioning phase in extracted position for calibration and monitoring purposes:

- Relative energy response equalization
- Relative time offset equalization (2-step calibration: raw T0 offset + iterative procedure to align cell times at O(10 ps) level)
- **Stability** of energy and time response
- Calibration of Waveform templates (once for all)
- Development of **reconstruction algorithms** (ex: determination of z-coordinate)

Energy and time calibration algorithms extensively studied with MDC2018 MC campaign and successfully applied to Module-0 calorimeter prototype (Mu2e-doc-24588, Mu2e-doc-37325, Mu2e-doc-43984)

New MDC2020 CR production

- 10 hour data taking with cosmics in extracted position using CRY generator
- No B field, calo triggered events

Recent Work

- Important Tasks Completed Since Last update:
 - CRY 10hr Extracted:

ltech

- · For calibration and alignment routine development.
- See talk: mu2e-doc-db-46026-v3

Name	Files	Events
dts.mu2e.CosmicCRYExtracted.MDC2020y_perfect_v1_1.art	9998	242809548
dig.mu2e.CosmicCRYExtractedCatDigiTrk.MDC2020y_perfect_v1_1.art	849	24957784
dig.mu2e.CosmicCRYExtractedCatDigiTrk.MDC2020y_best_v1_1.art	881	25836556
dig.mu2e.CosmicCRYExtractedCatDigiTrk.MDC2020y_startup_v1_1.art	947	27735028
dig.mu2e.CosmicCRYExtractedCatDigiCalo.MDC2020y_perfect_v1_1.art	844	1512236
dig.mu2e.CosmicCRYExtractedCatDigiCalo.MDC2020y_best_v1_1.art	904	1618964
$dig.mu2e.Cosmic CRYExtracted Cat Digi Calo.MDC 2020 y_startup_v1_1.art$	943	1689327

Production Manager Update – Sophie Middleton – smidd@caltech.edu

MDC2020 & MDC2018 comparison: energy distributions

We found an unexpected shift (~15%) in the energy response of the calorimeter from MDC2018 to MDC2020

🛟 Fermilab

Event selection

- At least 3 crystals with $E_{cry} > 15$ MeV connected to a calorimeter cluster
- Selection of three types of straight tracks:
 - \circ Vertical tracks, requiring $\Delta X < 35$ mm
 - o Diagonal tracks i.e. CRs hitting 1 crystal per layer
 - o General tracks χ^2 /Ndf < 2.5 from the linear fit applied to cell center positions

辈 Fermilab

Example of tracks selected and rejected

Bad track rejected by χ^2 /ndf cut

‡ Fermilab

12/14/2023 Pierluigi Fedeli I Calorimeter energy calibration on MDC2020 4

Calibration method – Energy Deposited Langaus function

- For all the events that pass the selection we build the energy deposited distribution for each crystal, and we fit it with a Langaus function
- From the fit we extract the MPV value for each crystal and we build the distribution of all the MPV's

🛟 Fermilab

Energy deposited in crystal 610

5 12/14/2023 Pierluigi Fedeli I Calorimeter energy calibration on MDC2020

MDC2020 calibration exercise - smearing

10% random uniform smearing applied to Ecry to simulate a possible experimental offset

We calibrate using MPV/ MPV_smeared obtaining σ /MPV= 2‰

MDC2020 final results - trends vs phi

‡ Fermilab

Flatter behavior along the azimuthal angle of the calorimeter

16 12/14/2023 Pierluigi Fedeli I Calorimeter energy calibration on MDC2020

T₀ alignment procedure

Reminder:

- Only clusters with at least three fired cells are included in the procedure
- All cells with $10 < E_{cry} < 30$ MeV of the selected clusters used
- For each event, least square linear fit to time vs relative distance of the cells, imposing light velocity. Common T₀ subtracted to all cells
- Good linear fit ($\chi^2/N_{dof} < 2$)
- Fit residuals of each calorimeter channel with a Gaussian
- Extract first calibration set from the fit (T_{corr})
- Apply an iterative procedure, subtracting residuals and repeating the fit until the procedure converges

T0 alignment on MDC2020

Comp-Soft Workshop @ Mu2e CM - S. Giovannella - Calo calib w/ MDC2020 CRY sample - 4 October 2023

T0 alignment: results

Comp-Soft Workshop @ Mu2e CM – S. Giovannella – Calo calib w/ MDC2020 CRY sample – 4 October 2023

T0 alignment: correction

MDC2020:

- larger spread (improved noise simulation)
- better uniformity (no B field)

T0 alignment: resolution

Flat ~ 500 ps resolution for readout channels \rightarrow 350 ps at crystal level

- Energy and time calibration studies for calorimeter performed with the MDC2020 CRY sample, corresponding to 10h running in extracted position
 - T₀ calibration at 15 ps level produced by a stable procedure
 - Energy calibration at 0.2% level

- A Mu2e/CaloCalibration repository exists to accommodate code for calo conditions DB handling and calorimeter calibration software
 - caloT0alig module already in GitHub
 - caloEneCcsmicsCalib ready, to be tested

Trigger filter for Cosmic Ray evts

- Calo-cosmic.MDC2018f sample (~2Mevts) used to develop a new trigger filter algorithm for CR events
- Four different topologies of events with clusters with 120 < E < 600 MeV
- Information both at cluster and crystal level used
- CaloCalibCosmics already in CaloFilters trg library

Calorimeter calibration DB Mu2e-doc-41541

Progress since last CM

Stage 1: Make Calo Digis (turns -

Stage 2: Make Calo Hits turns "digis" in to points with 3D positions, and associated edep)

itage 3: Make Calo Clusters (turns groups of associated hits into a cluster)

- Focus so far on energy calibration currently have just simple .txt file used in HitMaker to convert ADC \rightarrow MeV
- Define two types of table:
 - Archive Table: contain information which might be useful, but not needed on every reconstruction event.
 - Reco. Table: contain information which are required for reconstruction.
- Individual calibration methods to have their own archive table
- Fed into a CalCombineAlg class which will contain the algorithm which will output the combined calibration constants.
- CalCombineAlg outputs a table which is our RecoTable: CalEnergyCalibTable.
- **ProditionsService** can talk to this table and use the contents in reconstruction.
- Produtitions Entitiy (Object) = CalEnergyCalib built from final reco table.
- Not in Offline yet but branch exists: https://github.com/sophiemiddleton/Offline/tree/CaloDB

