# Updates of experimental activity on crystals for Mu2e 

INFN Ferrara

INFN

Istituto Nazionale di Fisica Nucleare


Università degli Studi di Ferrara

## Anticlastic bending

- In order to achieve deflection $\theta=300 \mu \mathrm{rad}$ with crystal thickness along the beam of $t=400 \mu \mathrm{~m}$, the anticlastic radius of curvature is

$$
R_{\text {Anticlastic }}=\frac{400 \mu \mathrm{~m}}{300 \mu \mathrm{rad}}=1.333 \mathrm{~m}
$$

- Thus, the primary bending radius for the (110) planes would be

$$
R_{P}=\frac{R_{A}}{\text { Poisson Ratio }}=\frac{1.333 \mathrm{~m}}{3.59}=0.37140 \mathrm{~m}
$$

Anticlastic
curvature



## Anticlastic bending section



## Arc shadow for straight septum

- Area to shadow:
- Horizontal(H): Septum width $50 \mu \mathrm{~m}$
- Vertical (V): Beam vertical size 20 mm
- Condition for full shadowing

$$
R_{P}-\sqrt{R_{P}^{2}-\left(\frac{V}{2}\right)^{2}} \leq \text { width }_{\text {CRYSTAL }}-\text { width }_{\text {SEPTUM }}
$$

- Given the radius of curvature and width of crystal, the maximum vertical size for full shadowing is 27.25 mm


## Profile crystal + holder

- A=Height of the portion of crystal free of metal clamping $=>30 \mathrm{~mm}$

- $\mathrm{B}=$ distance between crystal and metal holder $=>20 \mathrm{~mm}$
- Assumes the holder is placed on the opposite to the beam side



## Torsion

- When flexed, a crystal may be subjected to torsion
- Torsion changes alignment between crystal and beam along the vertical direction, decreasing the total channeling efficiency
- What is the maximum amount of torsion acceptable in $\mu \mathrm{rad} / \mathrm{mm}$ ?
- See next page


What is the maximum amount of torsion acceptable in $\mathrm{T}[\mu \mathrm{rad} / \mathrm{mm}]$ ?

I realized this is not easy! That means how parallel you can keep the ends of red sides " a " between top and bottom at the distance of "b".
That would be

$$
\delta x=T \cdot a \cdot b
$$

For $\delta x=10 \mu m$

$$
T=\frac{10 \mu \mathrm{~m}}{5 \mathrm{~cm} \cdot 5 \mathrm{~cm}}=4 \frac{\mu R}{\mathrm{~mm}}
$$



## Summary table

| Deflection Angle | $300 \mu \mathrm{rad} \pm 20 \mu \mathrm{rad}$ |
| :--- | :--- |
| Crystal Thickness along the beam | $400 \mu \mathrm{~m}$ |
| Crystal Width across the beam (H) | $300 \mu \mathrm{~m} \pm 20 \mu \mathrm{~m}$ or better |
| Crystal Torsion | $2 \mu \mathrm{rad} / \mathrm{mm}$ |
| Distance between crystal and holder | $>20 \mathrm{~mm}$ (somewhat flexible) |
| Height of crystal free of clamping | $>30 \mathrm{~mm}$ |
| Holder Material | Aluminum alloy Stainless preferred |
| Bake-out cycle | No |

