

Updates of experimental activity on crystals for Mu2e

INFN Ferrara

INFN

Istituto Nazionale di Fisica Nucleare

Università degli Studi di Ferrara

December 18, 2023

Anticlastic bending

curvature • In order to achieve deflection θ =300µrad with crystal thickness along the beam of $t=400\mu m$, the anticlastic radius of curvature is $R_{Anticlastic} = \frac{400\mu m}{300\mu rad} = 1.333 m$ Thickness along the beam $(400\mu m)$ Width (w) • Thus, the primary bending radius for the (110) Height (h)planes would be Primary curvatur $=\frac{R_A}{Poisson Ratio} = \frac{1.333m}{3.59} = 0.37140 m^{-1}$ Beam R_P

Anticlastic

Slides from discussion with Nagaslaev on November 16 and following weeks

Anticlastic bending section

Arc shadow for straight septum

- Area to shadow:
 - Horizontal(H): Septum width 50µm
 - Vertical (V): Beam vertical size 20mm
- Condition for full shadowing

$$R_{P} - \sqrt{R_{P}^{2} - \left(\frac{V}{2}\right)^{2}} \le width_{CRYSTAL} - width_{SEPTUN}$$

 Given the radius of curvature and width of crystal, the maximum vertical size for full shadowing is 27.25mm

Profile crystal + holder

- A=Height of the portion of crystal free of metal clamping = >30mm
- B=distance between crystal and metal holder = >20mm
 - Assumes the holder is placed on the opposite to the beam side

Torsion

- When flexed, a crystal may be subjected to torsion
- Torsion changes alignment between crystal and beam along the vertical direction, decreasing the total channeling efficiency
- What is the maximum amount of torsion acceptable in µrad/mm?
 - See next page

What is the maximum amount of torsion acceptable in T [μ rad/mm]?

I realized this is not easy! That means how parallel you can keep the ends of red sides "a" between top and bottom at the distance of "b". That would be

$$\delta x = T \cdot a \cdot b$$

For $\delta x = 10 \mu m$

$$T = \frac{10\mu m}{5cm \cdot 5cm} = 4\frac{\mu R}{mm}$$

Summary table

Deflection Angle	300 μrad <mark>±20μrad</mark>
Crystal Thickness along the beam	400 μm
Crystal Width across the beam (H)	300 μm ±20μm or better
Crystal Torsion	<mark>2</mark> μrad/mm
Distance between crystal and holder	>20 mm (somewhat flexible)
Height of crystal free of clamping	>30mm
Holder Material	Aluminum alloy Stainless preferred
Bake-out cycle	Νο