L.Martina

Dip. Fisica - Univ. Salento, Sez. INFN Lecce, Italy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nonlinear Systems: Theory and Applications

Sezioni				
Lecce, Perugia				
Componenti				
■ Lecce 〈	(M. Boiti M. Gianfreda B. Konopelchenko G. Landolfi L. Martina F. Pempinelli B.Prinari L. Renna	(rappr.naz.)		
Perugia				

Partecipanti esterni stranieri

- 1 Steklov Mathematical Institute of Moscow, Russia (A. Pogrebkov)
- 2 L.D. Landau Inst. Theor. Phys., Moscow, Russia (L. Bogdanov, M. Pavlov)
- 3 Dept. of Appl. Math. Univ. of Colorado at Boulder CO USA (M. Ablowitz, S. Chakravarty)
- 4 Dept. of Mathematics SUNY Buffalo, Buffalo NY, USA (G. Biondini)
- 5 Department of Mathematics Montclair State University, NJ, USA (A. Trubatch)
- 6 Universidad Complutense, Madrid, Spain (L. Martinez Alonso)
- 7 Lab. Math. & Phys. Theor., Univ. de Tours, France (P. Horvathy)
- 8 Institute of Applied Physics, RAS Nizhny Novgorod, Russia (A. Protogenov, V. Verbus)
- 9 CRM, Univ. de Montreal, (Que) Canada (A.M. Grundland, P. Winternitz)

Partecipanti esterni italiani

1	Dip.	Fisica, Universita' di Milano, Italy	(M. Paris)
2	Dip.	Matematica, Universita' di Milano, Italy	(G. Ortenzi)
3	Dip.	Modelli e Metodi Matem. La Sapienza, Roma, Italy	(M. Lo Schiavo)
4	Univ	rersita' di Milano Bicocca, Italy (F. Magri	, G. De Matteis)
5	Dip.	Fisica, Univ. Roma III (Roma, Italia)	(D. Levi)
6	Dip.	Matematica, Universita' di Cagliari, Italy 🛛 (C. Van der Me	ee, F. Demontis)
7	Dip.	Fisica, Universita' del Salento, Lecce Italy	(S. Zykov)
8	Dip.	Matematica, Universita' del Salento, Lecce Italy	(R Vitolo)

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Extended resolvent and applications

Boiti, Pempinelli

- **1** Extended resolvent generalizes the classical resolvent of differential operators.
- 2 It can be used to study the nonlinear integrable evolution equations, as the Kadomtsev-Petviashvili I and II equations

(ロ) (型) (E) (E) (E) (O)

- 3 N solitons with N incoming rays and one outgoing ray
- 4 Complete description of the Jost solutions
- 5 Solution of the IVP for KPII

- M. Boiti et al, Theor. Math. Phys., 159: 721733 (2009)
- M. Boiti et al, Theor. Math. Phys., 165: 1237-1255 (2010)

$$(u_t - 6uu_{x_1} + u_{x_1x_1x_1})_{x_1} = -3u_{x_2x_2},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Study of the Davey-Stewartson Equation

Singular Sector of Hydrodynamical type Systems

Konopelchenko

- Singular sector of the classical one-layer Benney system
- 2 dispersionless Toda equation and large N limit Hermitian Random Matrix Model

ション ふゆ アメリア メリア しょうくの

- 3 dispersionless KdV and Hermitian Random Matrix Model
- 4 Hermitian Random Matrix Model and Euler-Poisson-Darboux equation
- 5 Gradient Catastrophe and Thom's Catastrophe
- 6 Instability of vortex filament by dispersionless da Rios system

Algebro-Geometric structure in Sato-Grassmannians

Konopelchenko

- 1 Algebraic varieties and curves in Birkhoff strata of Sato Grassmannian
- 2 Isomorphism among ∞ -dim associative algebras and algebraic curves in Birkhoff strata

うして ふゆう ふほう ふほう うらつ

- 3 Regularization of degenerate algebraic curves.
- 4 Harrison's cohomology of algebraic varieties.
- 5 Deformations of hyperelliptic curves and the dispersionless KP hyerarchy.
- 6 The Yano-Ako system and the Frobenius manifold theory.

- 📕 B G Konopelchenko and G Ortenzi, J. Phys. A: Math. Theor. 42 (2009) 415207
- B. G. Konopelchenko, Theoretical and Mathematical Physics, 159(3): 842852 (2009)
- 📕 BG Konopelchenko, J. Phys. A: Math. Theor. 42 (2009) 454003
- B Konopelchenko, J. Phys. A: Math. Theor. 42 (2009) 095201
- B Konopelchenko, L Martinez Alonso and E Medina, J. Phys. A: Math. Theor.
 43 (2010) 434020
- 📕 BG Konopelchenko and G Ortenzi, J. Phys. A: Math. Theor. 43 (2010) 195204

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

B Konopelchenko, L Martinez Alonso and E Medina, Physics Letters A 375 (2011) 867872

Simmetries and Entanglement in Quantum Systems

Landolfi

- 1 Entanglement in continuous solvable models. Witness observables.
- 2 Darboux transformations to quadratic Hamiltonians
- 3 Spectral properties of the Weyl-ordered operators involving powers of position and momentum and their eigenfunctions
- 4 Observables canonically conjugated to the Hamiltonians.
- 5 Stationary position-momentum correlated states of time-dependent hamiltonians.
- 6 Generalized heterodyne detection for linear multimode fields.
- 7 Decoherence phenomena for non-autonomous quantum systems

- M. Gianfreda, G. Landolfi and M. G. A. Paris, Theor. Math. Phys., 160(1): 925932 (2009)
- M. Gianfreda, G. Landolfi, Theor. Math. Phys. (in press)
- M. Gianfreda, G. Landolfi:Spectral problem for Weyl-ordered form of operators, preprint 2011
- M. Gianfreda, G. Landolfi:On the feasibility and robustness of steady position-momentum correlations for time-dependent quadratic systems, preprint 2011
 - L. Martina , G. Ruggeri, G. Soliani : Correlation Energy and Entanglement Gap in Continuous Models, Int. J. Quant. Inf. **6**, n. 3 (2011), 766

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Inverse Scattering Transform: extensions and Applications

Prinari

- 1 IST for defocusing V-NLS equation with nonvanishing boundary conditions.
- 2 Dark-dark and dark-bright soliton interaction for 2-NLS.
- 3 Asymptotic states for solitons of the 2-NLS equation, to be generalized to N-components case.
- 4 NLS in non euclidean spaces
- 5 IST for discretized NLS
- 6 Algebraic methods for NLS with nontrivial boundary conditions.
- 7 Dispersive shock waves and NLS with discontinuous initial data.
- 8 IST for coupled Maxwell Bloch systems
- 9 Analysis of a nonlinear nonlocal ODE system modeling the performance and clinical outcome of an existing medical word

- B. Prinari, G. Biondini, and A. D. Trubatch: Inverse Scattering Transform for the Multi-Component Nonlinear Schr "odinger Equation with Nonzero Boundary Conditions, Studies in Applied Math. 126 (2011) 245-302.
- M. Lo Schiavo, B. Prinari, A.V. Serio, Mathematical modeling of quality in a medical structure: a case study, Math. Comp. Mod. 2011 (in press)
- G. Dean, T. Klotz, B. Prinari, F. Vitale: Dark-dark and dark-bright soliton interactions in the two-component defocusing nonlinear Schrödinger equation, preprint 2011.

$$i\mathbf{q}_t = \mathbf{q}_{xx} - 2\sigma \|\mathbf{q}\|^2 \mathbf{q}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Chaotic systems and applications

Renna

- **1** Qualitative behavior of a periodically kicked mechanical oscillator, with damping.
- 2 Numerical analysis with (i) sinusoidal and (ii) Gaussian pulses
- 3 Forcing symmetry and resonance symmetry dominance
- 4 The mechanisms of diseases spread by a SIRS model with a variable population size
- 5 The mechanisms of diseases spread by a SIRS model with seasonal variability
- 6 Climate change detection by use of bayesian approaches.

L. Renna, F. Paladini, Theor. Math. Phys. 168 (2011) 1010-1019

Symmetries in Nonlinear models

Martina

- Symmetries and solutions for the infrared limit of the pure Yang-Mills theory and the generalized 2-components Ginzburg-Landau Model
- 2 Symmetries for Dynamics in Non-Commutative Spaces and Generalizations

ション ふゆ アメリア メリア しょうくの

3 Symmetries of continuous and discrete Surfaces in Lie Algebras

- L. M., A. Protogenov, V. Verbus, Theor. Math Phys. (2008)
- L. M., A. Protogenov, V. Verbus, J. Nonlinear Math. Phys. 15, 343-351 (2008)
- L. M., A. Protogenov, V. Verbus, Theor. Math. Phys. 160, n. (2009), 1058
- L. M., A. Protogenov, V. Verbus, Theor. Math. Phys. 167(3)(2011), 843855
- L.M. G. Martone, S. Zykov: Studies on the pure Yang-Mills model, in preparation
- P. A. Horváthy, L. M., P. C. Stichel, SIGMA 6 (2010) 060, P. Aschieri et al. ed.s Noncommutative Spaces and Fields
- L. M., Theor. Math. Phys. 167 (3) (2011), 816825, arXiv:1011.3545
- A.M. Grundland, L.M.:Symmetries of the \mathbb{CP}^{N-1} model and the continuous deformations of their associated Surfaces, in preparation

(ロ) (型) (E) (E) (E) (O)

The pure Yang-Mills theory

Pure SU(2) Yang-Mills - No Matter

$$S=-\int F\wedge\star F,$$

$$F = A + A \land A, \qquad A = -T^{a}A_{\mu}^{a}(x)x^{\mu}, \quad T^{a} \in su(2)$$

*F + A \lapha *F - *F \lapha A = 0, \quad F + A \lapha F - F \lapha A = 0.

local gauge invariance $A \rightarrow VAV^{-1} + VV^{-1}, V \in SU(2)$

$$F = \frac{1}{2} T^{a} \left(\partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + f^{abc} A^{b}_{\mu} A^{c}_{\nu} \right) x^{\mu} \wedge x^{\nu} = \frac{1}{2} T^{a} F^{a}_{\mu\nu} x^{\mu} \wedge x^{\nu}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Nonlinear Systems: Theory and Applications LE41 2011/'12 — Spin-Charge Separation

Spin-Charge Separation

$$\begin{split} & U_{\rm C}(1) \qquad A_a^i \to \left(A_a, X_a^{\pm}\right), \qquad X_a^{\pm} = A_a^1 \pm A_a^2, \qquad A_a = A_a^3. \\ & X_a^+ = \psi_1 e_a + \psi_2 \bar{e}_a, \quad X_a^- = \left(X_a^+\right)^* = \psi_1^* \bar{e}_a + \psi_2^* e_a \qquad e_a e_a = 0, \quad e_a \bar{e}_a = 1. \\ & P_{ab} = \frac{1}{2} \left(|\psi_1|^2 - |\psi_2|^2 \right) \left(e_a \bar{e}_b - e_b \bar{e}_a \right). \\ & U_{\rm I}(1) - \text{inner symmetry} e_a \to e^{-\lambda} e_a, \qquad \psi_1 \to e^{\lambda} \psi_1, \qquad \psi_2 \to e^{-\lambda} \psi_2. \\ & p_i = \frac{1}{2} \left(e_4 \bar{e}_i - e_i \bar{e}_4 \right), \qquad q_i = \frac{1}{2} \epsilon_{ijk} e_j \bar{e}_k, \qquad \vec{p} \cdot \vec{q} = 0, \qquad |\vec{p}|^2 + |\vec{q}|^2 = \frac{1}{4} \\ & n_+ =^{-2\eta} \frac{1}{\rho^2} \psi_1^* \psi_2, \qquad n_- =^{2\eta} \frac{1}{\rho^2} \psi_1 \psi_2^*, \qquad n_3 = \frac{|\psi_1|^2 - |\psi_2|^2}{\rho^2}, \Rightarrow \vec{n} \xrightarrow{r \to \infty} \pm \hat{z} \\ & \hat{C}_a = C_a + \partial_a \eta = \hat{e}_b \partial_a \hat{e}_b = -2 |\vec{q}| \left(\vec{k} \times \vec{l} \cdot \partial_a \vec{k}\right) = \frac{2\vec{p} \cdot \partial_a \vec{s}}{|\vec{p}|^2} \\ & \vec{k} = \frac{\vec{p}}{|\vec{p}|}, \qquad \vec{l} = \frac{\vec{q}}{|\vec{q}|}, \qquad \vec{s} = \vec{p} \times \vec{q} \end{split}$$

Quantizing in background

Path-Integral Quantization Faddeev-Popov gauge fixing $\int \mathcal{D}A^{S[A]} = \left(\int \mathcal{D}\alpha\right) \int \mathcal{D}A^{S[A]} \delta \left[G\left[A\right]\right] \det \left(\frac{\delta G\left[A^{\alpha}\right]}{\delta\alpha}\right).$

 $InfraRed\ limit:\ Classical\ background+\ Quantum\ fluctuations$

$$\begin{split} X_{a}^{\pm} \to X_{a}^{\pm} + \hat{X}_{a}^{\pm}, & A_{a} \to A_{a} + \hat{A}_{a}, \\ g. - f. \pm U_{\mathcal{C}}(1) \quad G^{\pm}\left[A\right] = D_{Aa}^{\pm}\left(X_{a}^{\pm} + \hat{X}_{a}^{\pm}\right) - \zeta^{\pm}, \\ \mathcal{L}_{\rm YM} &= \frac{1}{4}\mathcal{F}_{ab}^{2} + \frac{1}{2}\left(\partial_{a}\rho\right)^{2} + \frac{1}{8}\rho^{2}\left(D_{a}^{\hat{c}}\vec{n}\right)^{2} + \rho^{2}\left[\left(\partial_{a}\vec{p}\right)^{2} + \left(\partial_{a}\vec{q}\right)^{2}\right] \\ &+ \frac{\rho^{2}}{2}\left(n_{+}\left(\partial_{a}\hat{e}_{b}\right)^{2} + n_{-}\left(\partial_{a}\hat{e}_{b}\right)^{2}\right) + \frac{1}{2}\rho^{2}J_{a}^{2} + \frac{3}{8}\left(1 - n_{3}^{2}\right)\rho^{4} - \frac{3}{8}\rho^{4}, \\ \mathcal{F}_{ab} &= \left(\partial_{a}J_{b} - \partial_{b}J_{a}\right) + \frac{1}{2}\vec{n}\cdot D_{a}^{\hat{c}}\vec{n} \times D_{b}^{\hat{c}}\vec{n} - n_{3}\left(\partial_{a}\hat{c}_{b} - \partial_{b}\hat{c}_{a}\right) - 2\rho^{2}n_{3}H_{ab} \\ J_{a} &= \frac{2\rho^{2}}{2\rho^{2}}\left(\psi_{1}^{*}D_{Aa}^{\mathcal{C}}\psi_{1} - \psi_{1}\bar{D}_{Aa}^{\mathcal{C}}\psi_{1}^{*} + \psi_{2}^{*}D_{Aa}^{\mathcal{C}}\psi_{2} - \psi_{2}\bar{D}_{Aa}^{\mathcal{C}}\psi_{2}^{*}\right) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

- $U_C(1) imes U_I(1)$ -Invariant Fields
- $\vec{n}
 ightarrow {
 m O}(3)$ nonlinear σ model
- $(\vec{p},\vec{q}) \rightarrow G(4,2)$ -nonlinear σ model
- Interaction terms: $T^{*1,0}\mathbb{S}^2_+ \times T^{*0,1}\mathbb{S}^2_- \to \mathbb{R}$
- Static Limit

$$\begin{split} \mathcal{H}_{\text{statica}} &= \frac{1}{4} \mathcal{F}_{ij}^{2} + \frac{1}{2} \left(\partial_{i} \rho \right)^{2} + \frac{1}{8} \rho^{2} \left(D_{i}^{\hat{C}} \vec{n} \right)^{2} + \frac{1}{4} \rho^{2} \left(\partial_{i} \vec{l} \right)^{2} \\ &+ \frac{\rho^{2}}{4} \left\{ n_{+} \left[\left(\vec{m} - \vec{k} \right) \cdot \partial_{i} \vec{l} \right]^{2} + n_{-} \left[\left(\vec{m} + \vec{k} \right) \cdot \partial_{i} \vec{l} \right]^{2} \right\} \\ &+ \frac{1}{2} \rho^{2} J_{i}^{2} + \frac{3}{8} \left(1 - n_{3}^{2} \right) \rho^{4} - \frac{3}{8} \rho^{4}, \\ \mathcal{F}_{ij} &= \partial_{i} J_{j} - \partial_{j} J_{i} + \frac{1}{2} \vec{n} \cdot D_{i}^{\hat{C}} \vec{n} \times D_{j}^{\hat{C}} \vec{n} + n_{3} \left(\vec{l} \cdot \partial_{i} \vec{l} \times \partial_{j} \vec{l} - \rho^{2} \epsilon_{ijk} I_{k} \right) \end{split}$$

 $\rho \in \mathbb{R}$; 4 - v.- f. $J_a \in \mathbb{R}$; 2 independent comp.s $\vec{n} \in \mathbb{R}$, $\vec{n}^2 = 1$, 4 comp.s \hat{e}_a London Limit $\rho \to \Delta$,

$$\mathcal{L} = \frac{\Delta^2}{8} \left(D_a^{\hat{C}} \vec{n} \right)^2 + \frac{3}{8} \Delta^4 \left(1 - n_3^2 \right)$$

$$+ \frac{1}{16} \left[\vec{n} \cdot D_a^{\hat{C}} \vec{n} \times D_b^{\hat{C}} \vec{n} - 2n_3 \left(\partial_a \hat{C}_b - \partial_b \hat{C}_a \right) \right]^2$$
(1)
(1)

Nonlinear Systems: Theory and Applications LE41 2011/'12 — Reductions of the static pure Yang-Mills Model

Reductions of the static pure Yang-Mills Model

- L.M., G. Martone (2011)
 - $\vec{n} \neq \text{cost}$, $\rho = \Delta = \text{cost}$ e $J_a = 0$,

$$\mathcal{L} = \frac{\Delta^2}{8} \left(\partial_a \vec{n} \right)^2 + \frac{1}{16} \left(\vec{n} \cdot \partial_a \vec{n} \times \partial_b \vec{n} - 4\Delta^2 n_3 H_{ab} \right)^2 - \frac{3}{8} \Delta^4 n_3^2;$$
(2a)

$$\vec{n} = \hat{\vec{z}} = \text{cost}, \ \rho \neq \text{cost} \ \mathbf{e} \ J_{\mathbf{a}} \neq \mathbf{0},$$

$$\mathcal{L} = \frac{1}{4} \left(\partial_{a} J_{b} - \partial_{b} J_{a} - 2\rho^{2} H_{ab} \right)^{2} + \frac{1}{2} \left(\partial_{a} \rho \right)^{2} + \frac{1}{2} \rho^{2} J_{a}^{2} - \frac{3}{8} \rho^{4}; \qquad (2b)$$

• $\vec{n} \neq \text{cost}$, $\rho = \Delta = \text{cost}$ **e** $J_a \neq 0$, (Current States)

$$\mathcal{L} = \frac{1}{4} \left[\left(\partial_a J_b - \partial_b J_a \right) + \frac{1}{2} \left(\vec{n} \cdot \partial_a \vec{n} \times \partial_b \vec{n} \right) - 2\Delta^2 n_3 H_{ab} \right]^2 + \frac{\Delta^2}{2} J_a^2 + \frac{\Delta^2}{8} \left(\partial_a \vec{n} \right)^2 - \frac{3}{8} \Delta^4 n_3^2.$$
(2c)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Skyrme Faddeev- Model

T. H. R. Skyrme, Proc. R. Soc. Lond. A 260 (1961), 127; Nucl. Phys. 31 (1962), 556.

L. Faddeev, Quantisation of Solitons, preprint IAS Print-75-QS70, 1975

$$E\left[\vec{n}\right] = \int_{\mathbb{R}^3} \left\{ \left(\partial_a \vec{n}\right)^2 + \left(\frac{1}{2} \left(\vec{n} \cdot \partial_a \vec{n} \times \partial_b \vec{n}\right)\right)^2 \right\}^3 x,$$

$$\begin{aligned} x \to \Lambda x \Rightarrow \int_{\mathbb{R}^3} (\partial_a \vec{n})^{2} \,{}^3x &\to \Lambda \int_{\mathbb{R}^3} (\partial_a \vec{n})^{2} \,{}^3x \\ \int_{\mathbb{R}^3} (\vec{n} \cdot \partial_a \vec{n} \times \partial_b \vec{n})^{2} \,{}^3x &\to \Lambda^{-1} \int_{\mathbb{R}^3} (\vec{n} \cdot \partial_a \vec{n} \times \partial_b \vec{n})^{2} \,{}^3x \Rightarrow \Lambda = 1 \end{aligned}$$

$$\partial_a^2 \vec{n} - (\partial_a \mathcal{F}_{ab}) (\vec{n} \times \partial_b \vec{n}) = (\vec{n} \cdot \partial_a^2 \vec{n}) \vec{n}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Hopf Charge: hopfions

$$\lim_{|\vec{x}|\to\infty}\vec{n}\left(\vec{x}\right)=\vec{n}_{\infty}=(0,0,1)\Leftrightarrow\vec{n}:\mathbb{S}^{3}\to\mathbb{S}^{2}$$

The Hopf Invariant $N[\vec{n}] \in \pi_3(\mathbb{S}^2) = \mathbb{Z}$ $\mathcal{H} = \frac{1}{2} (\vec{n} \cdot \partial_a \vec{n} \times \partial_b \vec{n}) x_a \wedge x_b$ is closed $\mathcal{H} = 0$ $\mathcal{H}^2(\mathbb{S}^3) = \{0\} \Rightarrow \mathcal{A} = \mathcal{A}_a x_a : \mathcal{H} = \mathcal{A}$

$$N\left[\vec{n}
ight] = rac{1}{4\pi^2} \int_{\mathbb{S}^3} \mathcal{H} \wedge \mathcal{A}.$$

 $n_1 + n_2 = (m\phi - n\psi) \sin \Theta, \ n_3 = \cos \Theta \qquad C : \vec{n} = \vec{n}_{\infty}, \ S : \vec{n} = -\vec{n}_{\infty}$

The energy bound

$$E[\vec{n}] \ge c |N[\vec{n}]|^{3/4}, \quad c \approx (3/16)^{3/8}$$

- 📕 A. F. Vakulenko, L. V. Kapitansky, Sov. Phys. Dokl. 24 (1979), 433
- 📕 A. Kundu e Y. P. Rybakov, *J. Phys. A* 15 (1982), 269
- R. S. Ward, Nonlinearity 12 (1999), 241
- 🧾 M. F. Atiyah e N. S. Manton, *Phys. Lett. A* 222 (1989), 438
- L. D. Faddeev e A. J. Niemi, *Nature* **387** (1997), 58.
 - R. Battye e P. Sutcliffe, Proc. Roy. Soc. London A 455 (1999), 4305;Phys. Rev.
 - Lett. 81 (1998), 4798; J. Hietarinta e P. Salo, Phys. Lett. B 451 (1999), 60.
 - P. Sutcliffe, Proc. R. Soc. A 463 (2007), 3001

vortices of higher topological charge are metastable configurations N = 7 Trefoil Knot configurations

Stereographic form of the Skyrme-Faddeev model

$$S^{2} \leftrightarrow \mathbb{C} \ \vec{n} = \left(\frac{w + \bar{w}}{w \bar{w} + 1}, -\frac{i(w - \bar{w})}{w \bar{w} + 1}, \frac{1 - w \bar{w}}{w \bar{w} + 1}\right) \quad w = \frac{n_{1} + in_{2}}{1 - n_{3}}$$
$$\mathcal{L}_{w} = \frac{\sum_{i=0}^{3} g_{i} \partial_{i} w \ \partial_{i}}{8\pi^{2} (1 + w)^{2}} + \lambda \frac{\sum_{i,j=0,i < j}^{3} g_{i} \ g_{j} (\partial_{i} w \ \partial_{j} - \partial_{j} w \ \partial_{i})^{2}}{16\pi^{2} (1 + w)^{4}}.$$
$$U = (w,) \quad U_{i} = \partial_{i} U, \quad U_{i,j} = \partial_{i} \partial_{j} U.$$
$$\sum_{0 \le i \le j \le 3} K_{ij} \left[U, U_{0}, \dots, U_{3}\right] U_{ij} - K_{0} \left[U, U_{0}, \dots, U_{3}\right] = 0$$

$$\begin{aligned} &\mathcal{K}_{ij} = \quad g_i \left\{ \delta_{ij} \left[\left(1 + \frac{1}{2} U^{\dagger} U \right)^2 \sigma_1 + \frac{\lambda}{2} \mathbf{A} \sum_{I} \left(1 - \delta_{iI} \right) g_I U_I \otimes U_I \right] - \lambda \left(1 - \delta_{ij} \right) \mathbf{A} g_j U_i \otimes U_j \right\}, \\ &\mathcal{K}_0 = \quad \left\{ \left(1 + \frac{1}{2} U^{\dagger} U \right) \mathbf{A} \mathbf{B} \sum_{0 \le I \le 3} g_I U_I \otimes U_I - \frac{2\lambda}{1 + \frac{1}{2} U^{\dagger} U} \sum_{0 \le I < m \le 3} g_I g_m \left[\mathbf{A} \mathbf{C} U_I \otimes U_m \right]^2 \right\} U_I \right\} \end{aligned}$$

Lie-point Symmetry Group $\mathbb{R}^4 \otimes SO(3,1) \odot SO(3)$ \rightarrow Lagrangian Symmetries Nonlinear Systems: Theory and Applications LE41 2011/'12 Hedgehog Solutions

Hedgehog Solutions

symm. 1D s.alg.
$$\vec{v} = i (x \partial_y - y \partial_x) + \alpha (w \partial_w - \partial) \Rightarrow$$

 $w = e^{i\alpha\varphi} (\cot[\theta] + i \cot[\chi(r)] \csc[\theta])$
 $\vec{n} \cdot \vec{\sigma} = U (\vec{n}_\infty \cdot \vec{\sigma}) U^{\dagger}$
 $U = \exp[\chi(r) \vec{v}(\vartheta, \varphi) \cdot \vec{\sigma}] = \cos\chi(r) I + \sin\chi(r) \vec{v}(\vartheta, \varphi) \cdot \vec{\sigma}$

 $\vec{\nu}(\vartheta,\varphi) = (\sin(m\vartheta)\cos(n\varphi),\sin(m\vartheta)\sin(n\varphi),\cos(m\vartheta))$

$$E[\chi]_{n=m=1} = \frac{16\pi}{3} \Delta \int_{\mathbb{R}^+} \left\{ \left(\tilde{r}^2 + 2\sin^2 \chi \right) \chi'^2 + 2\sin^2 \chi + \frac{\sin^4 \chi}{\tilde{r}^2} \right\} \tilde{r}$$
$$\left(\tilde{r}^2 + 2\sin^2 \chi \right) \chi'' + \sin 2\chi \, \chi'^2 + 2\tilde{r}\chi' - \sin 2\chi \left(1 + \frac{\sin^2 \chi}{\tilde{r}^2} \right) = 0$$
$$\tilde{r} = (1/2)\Delta r \qquad \chi(0) = \pi \text{ and } \chi(\infty) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nonlinear Systems: Theory and Applications LE41 2011/'12 Hedgehog Solutions

Hedgehog Solutions

$$g(\tilde{r}) = \sin \frac{\chi(\tilde{r})}{2}.$$

$$(8g^4 - 8g^2 - \tilde{r}^2) (g^2 - 1) g'' + g [8g^2 (g^2 - 2) + \tilde{r}^2 + 8] g'^2$$

$$-2\tilde{r} (g^2 - 1) g' - \frac{2g (2g^2 - 1) (g^2 - 1)^2 (4g^4 - 4g^2 - \tilde{r}^2)}{\tilde{r}^2} = 0,$$

NO Painlevé Approximated solutions by rational f.

$$g_{rat}(r) = \frac{1 + a_1 \tilde{r} + a_2 \tilde{r}^2}{1 + a_1 \tilde{r} + b_2 \tilde{r}^2 + b_3 \tilde{r}^3 + b_4 \tilde{r}^4},$$

$$a_1 = 0.216, \quad a_2 = 0.230, \quad b_2 = 0.752, \quad b_3 = -0.018, \quad b_4 = 0.302,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nonlinear Systems: Theory and Applications LE41 2011/'12 Hedgehog Profile

Hedgehog Profile

Figura: Blu : numerical solution. Green: $\chi_{rat} = 2 \arcsin g_{rat}$. Red: test χ_p -function. Orange: Atiyah - Manton test function. Length unity $2\Delta^{-1}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Nonlinear Systems: Theory and Applications LE41 2011/'12 Hedgehog Shape

Hedgehog Shape

Figura: Hedgehog N=1 level surfaces $n_3 = 0.9$ e $n_3 = -0.9$. Color = $Hue \left[\arctan \left(\frac{n_2}{n_1} \right) \right]$ Nonlinear Systems: Theory and Applications LE41 2011/'12 — Rational Maps Ansatz

Rational Maps Ansatz

$$\vec{n}: S^3 \to S^2 \hookrightarrow \qquad S^2 \times S \qquad \to \qquad S^2$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$CP^1 \leftrightarrow z = \tan \left[\theta/2\right] e^{i\varphi} \qquad \to w\left(z,r\right)$$

 $\omega \in SO(3)$

On the sphere $\omega_{S}(z) = \frac{\alpha z + \beta}{-\beta z \alpha}$, $|\alpha|^{2} + |\beta|^{2} = 1$ In inner \vec{n} or w-space $\Leftrightarrow \omega_{T}(w) = \frac{\gamma w + \delta}{-\delta w \bar{\gamma}}$, $|\gamma|^{2} + |\delta|^{2} = 1$ symmetric map $w(\omega_{S}(z)) = \omega_{T}(w(z))$

 $R(z): CP^1 \rightarrow CP^1, \deg(R) = N$ 2-dim + 2-dim Irreducible representations of the SO(3) subgroups (Platonic symm) \rightarrow Klein Polynomials

(ロ) (型) (E) (E) (E) (O)

F. Klein, Lectures on the Icosahedron, (London, Kegan Paul, 1913)

Rational Maps Ansatz

$$\begin{split} \vec{\nu}_{R} &= \frac{1}{1+|R|^{2}} \left(R + \bar{R}, -i \left(R - \bar{R} \right), 1 - |R|^{2} \right) U_{R} = \exp\left[\chi\left(r \right) \vec{\nu}_{R} \cdot \vec{\sigma} \right] \\ E\left[\chi \right]_{R} &= \frac{16\pi}{3} \Delta \int_{\mathbb{R}^{+}} \left\{ \left(\tilde{r}^{2} + 2B_{R} \sin^{2} \chi \right) \chi'^{2} + 2B_{R} \sin^{2} \chi + I_{R} \frac{\sin^{4} \chi}{\tilde{r}^{2}} \right\} \tilde{r} \\ B_{R} &= -N \int_{\mathbb{C}} \left(\frac{1+|z|^{2}}{1+|R|^{2}} |\frac{dR}{dz}| \right)^{2} \frac{2idz \, d\bar{z}}{(1+|z|^{2})^{2}} \\ I_{R} &= \int_{\mathbb{C}} \left(\frac{1+|z|^{2}}{1+|R|^{2}} |\frac{dR}{dz}| \right)^{4} \frac{2idz \, d\bar{z}}{(1+|z|^{2})^{2}} \\ R_{D} &= z^{2}, R_{T} = \frac{z^{3} - \sqrt{3}iz}{\sqrt{3}iz^{2} - 1}, R_{O} = \frac{z^{4} + 2\sqrt{3}iz^{2} + 1}{z^{4} - 2\sqrt{3}iz^{2} + 1}, R_{Y} = \frac{z^{7} - z^{5} - 7z^{2} - 1}{z^{7} + z^{5} - 7z^{2} + 1} \end{split}$$

| ◆ □ ▶ → @ ▶ → 差 ▶ → 差 → のへぐ

Nonlinear Systems: Theory and Applications LE41 2011/'12 Rational Maps Ansatz

Rational Maps Ansatz

Conclusions and open problems

- 2c-GL model in Condensed Matter and Pure Yang- Mills in intermediate energies are relevant
- Reduce to similar equations: Skyrme-Faddeev model
- Localized perturbations are Knotted Vortices
- Knotted Vortices are stabilized by Hopf index
- Current states possess different energy bounds
- Approximate solutions can be found in the axisymmetric setting and/or in the rational map ansatz
- Higher symmetries (if any) are unknown
- Reduction / modification to integrable systems is unknown (not even in 2D)
- Interaction among hopfions is under considerations by numericals and by lattice toroidal moment models (Protogenov, Verbus)

Nonlinear Systems: Theory and Applications LE41 2011/12 Dynamics in Non-Commutative Spaces and Generalizations

Dynamics in Non-Commutative Spaces and Generalizations

🚺 V. Bargmann

On Unitary ray representations of continuous groups Ann. Math. 59 (1954) 1.

📚 J.-M. Lévy-Leblond (2+1)D $[K_1, K_2] = i\kappa$ Group Theory and Applications, Loebl Ed. (1972)

ション ふゆ アメリア メリア しょうくの

The "Exotic" Galilean symmetry

Can Physics carry "exotic" structure ?

Kirillov - Konstant - Souriau method of the Group Coadjoint Orbits

- 2 Acceleration-dependent Lagrangian
- A. Ballesteros *et al.* Moyal quantization of 2 + 1 dimensional Galilean systems *Journ. Math. Phys.* 33, 3379 (1992).
- D. R. Grigore
 Transitive symplectic manifolds in 1 + 2 dimensions Journ. Math. Phys. 37, 240 (1996).

The "Exotic" Galilean symmetry

Can Physics carry "exotic" structure ?

- Kirillov Konstant Souriau method of the Group Coadjoint Orbits
- 2 Acceleration-dependent Lagrangian
 - A. Ballesteros et al.
 Moyal quantization of 2 + 1 dimensional Galilean systems Journ. Math. Phys. 33, 3379 (1992).
- D. R. Grigore
 Transitive symplectic manifolds in 1 + 2 dimensions Journ. Math. Phys. 37, 240 (1996).

The "Exotic" Galilean symmetry

Can Physics carry "exotic" structure ?

- Kirillov Konstant Souriau method of the Group Coadjoint Orbits
- 2 Acceleration-dependent Lagrangian
- 3 📄 A. Ballesteros *et al.*

Moyal quantization of 2 + 1 dimensional Galilean systems *Journ. Math. Phys.* **33**, 3379 (1992).

 D. R. Grigore
 Transitive symplectic manifolds in 1 + 2 dimensions Journ. Math. Phys. 37, 240 (1996).

The "Exotic" Galilean symmetry

Can Physics carry "exotic" structure ?

- Kirillov Konstant Souriau method of the Group Coadjoint Orbits
- 2 Acceleration-dependent Lagrangian
- 3 📄 A. Ballesteros *et al.*

Moyal quantization of 2 + 1 dimensional Galilean systems *Journ. Math. Phys.* **33**, 3379 (1992).

 D. R. Grigore
 Transitive symplectic manifolds in 1 + 2 dimensions Journ. Math. Phys. 37, 240 (1996).

The "Exotic" Galilean symmetry

Can Physics carry "exotic" structure ?

- Kirillov Konstant Souriau method of the Group Coadjoint Orbits
- 2 Acceleration-dependent Lagrangian
- C. Duval, P. A. Horváthy The Exotic Galilei group and the Peierls substitution *Phys. Lett.* B 479, 284 (2000).
 - 📑 J. Lukierski *et al.*

Galilean-invariant (2 + 1)-dimensional models with a Chern-Simons-like term and d = 2 noncommutative geometry Annals of Physics (N. Y.) **260**, 224 (1997).

The "Exotic" Galilean symmetry

Can Physics carry "exotic" structure ?

- Kirillov Konstant Souriau method of the Group Coadjoint Orbits
- 2 Acceleration-dependent Lagrangian
- C. Duval, P. A. Horváthy The Exotic Galilei group and the Peierls substitution *Phys. Lett.* B 479, 284 (2000).

4 📄 J. Lukierski *et al.*

Galilean-invariant (2 + 1)-dimensional models with a Chern-Simons-like term and d = 2 noncommutative geometry Annals of Physics (N. Y.) **260**, 224 (1997).

Dynamics in Non-Commutative Spaces and Generalizations

└─ The Duval - Horvathy Model

The Duval - Horvathy Model

$$egin{aligned} \Omega &= \Omega_0 + eB\,dq_1 \wedge dq_2, & H = H_0 + eV \ B &= B\left(ec{x},t
ight), & V = V\left(ec{x},t
ight) \end{aligned}$$

DH-model

$$m^* \dot{x}_i = p_i - em\theta \epsilon_{ij} E_j$$
, anomalous velocity
 $\dot{p}_i = eE_i + eB \epsilon_{ij} \dot{x}_j$ Lorentz F.
 $m^* = m(1 - e\theta B)$ effective mass

Poisson Structure

$$\{x_1, x_2\} = \frac{m}{m^*} \theta, \quad \{x_i, p_j\} = \frac{m}{m^*} \delta_{ij}, \quad \{p_1, p_2\} = \frac{m}{m^*} eB$$

Dynamics in Non-Commutative Spaces and Generalizations

The Duval - Horvathy Model

Coupling to an external E.M. field

$$\begin{array}{rcl} {Cartan} & \lambda & = & (p_i - A_i) dx_i - \frac{\vec{p}^2}{2m} dt + \frac{\theta}{2} \epsilon_{ij} p_i dp_j \\ \\ {agrange} \ 2 - form & \sigma & = & d\lambda & \sigma\left(\widetilde{\gamma}, \cdot\right) = 0 \end{array}$$

$$\begin{aligned} \mathcal{A} &= \int_{\widetilde{\gamma}} \lambda = \int_{\widetilde{\gamma}} \left(f_i(\xi) \dot{\xi}^i - H(\xi) \right) dt \qquad \left[\xi = (\vec{x}, \vec{p}), \ \widetilde{\gamma} = (\gamma, \dot{\gamma}, t) \subset T^* \mathbb{R}^2 \times \mathbb{R} \right] \\ &\neq \int_{\widetilde{\gamma}} \frac{\partial L}{\partial v_i} dx^i + \left(L - \frac{\partial L}{\partial v_i} v_i \right) dt = \int_{t_1}^{t_2} L dt \end{aligned}$$

Hamiltonian EOM

$$\dot{\xi}^{i} = \{\xi^{i}, H\}, \quad \left\{\xi^{i}, \xi^{j}\right\} = \left\lfloor \left(\partial_{\xi^{a}} f_{b} - \partial_{\xi^{b}} f_{a}\right)^{-1} \right\rfloor_{ij}$$

$$m^* \to 0 \Leftrightarrow \frac{1}{eB_{cr}} = \theta \Rightarrow \begin{array}{c} \text{Constrained} \\ \text{System} \end{array} \Rightarrow \begin{array}{c} \text{Symplectic} \\ \text{reduction} \end{array}$$

Dynamics in Non-Commutative Spaces and Generalizations

L The Duval - Horvathy Model

The Symplectic Reduction

$$Q_{i} = x_{i} + \frac{1 - \sqrt{\frac{m^{*}}{m}}}{B} \varepsilon_{ij} p_{j}, P_{i} = \sqrt{\frac{m^{*}}{m}} p_{i} - \frac{B}{2} \varepsilon_{ij} Q_{j}$$

$$(m^{*} \to 0) \quad \lambda = f_{i} \left(\vec{Q}\right) dQ^{i} - H\left(\vec{Q}, \vec{p}\right)$$

$$\frac{\partial H}{\partial p^{i}} = 0 \Rightarrow \frac{p_{i}}{m} = \varepsilon_{ij} \frac{E_{j}}{B_{cr}} \quad \text{Hall's motions}$$

$$\frac{\partial H}{\partial Q^{i}} = -E_{i}$$

$$\{Q_{1}, Q_{2}\} = \frac{1}{eB_{cr}} = \theta, \quad H = V\left(\vec{Q}\right) \quad (\text{Peierl's subst.})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Quantization and Anyons

$$z = \frac{\sqrt{B}}{2} \left(Q_1 + iQ_2 \right) - i \frac{P_1 + iP_2}{\sqrt{B}} \\ w = \frac{\sqrt{B}}{2} \left(Q_1 - iQ_2 \right) - i \frac{P_1 - iP_2}{\sqrt{B}} \\ , \Omega_K = \frac{dz \wedge d\overline{z} + dw \wedge d\overline{w}}{2i}$$

Bargmann - Fock w.f. $\psi = f(z, w) \exp\left[-\frac{z\overline{z} + w\overline{w}}{4}\right]$

$$\left[\hat{\overline{z}}, \hat{z}\right] = \left[\hat{\overline{w}}, \hat{w}\right] = 2, \quad [\hat{w}, \hat{z}] = \left[\hat{\overline{w}}, \hat{\overline{z}}\right] = 0$$

$$\hat{H} = \hat{H}_0 + \hat{V}, \quad \hat{H}_0 = \frac{B}{2m^*} \left(\hat{w}\hat{\overline{w}} + 1 \right)$$
$$m^* \rightsquigarrow 0 \quad \text{and} \quad \hat{\overline{w}}f = 0 \Rightarrow \Psi = f(z) e^{-\frac{z\overline{z}}{4}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ANYONS at the Lowest Landau Level

📔 R. B. Laughlin

Phys.Rev.Lett. 50 ,1395(1983)

General noncommutative mechanics

$$\mathcal{L} = p_i \dot{x}_i + \tilde{A}_i(\vec{x}, \vec{p}) \dot{p}_i - \mathcal{H}(\vec{p}, \vec{x})$$

$$\{x_i, x_j\} = \epsilon_{ij} \tilde{B} \quad \left(\tilde{B} = \epsilon_{k\ell} \partial_{p_k} \tilde{A}_\ell(\vec{x}, \vec{p})\right), \quad \{x_i, p_j\} = \delta_{ij}, \quad \{p_i, p_j\} = 0$$

$$x_i \to q_i = x_i - \tilde{A}_i(\vec{x}, \vec{p}) \qquad \begin{array}{c} \text{Commutative} \\ \text{Coordinates} \end{array}$$

$$p_i \dot{x}_i + \tilde{A}_i \dot{p}_i = p_i \dot{q}_i + \frac{d}{dt} (\tilde{A}_i p_i)$$

~

| ◆ □ ▶ → @ ▶ → 差 ▶ → 差 → のへぐ

General noncommutative mechanics

Examples

Examples

A_i = Ã_i(
$$\vec{p}$$
),
 $\{x_i, x_j\} = \epsilon_{ij} \tilde{B}(\vec{p}) \quad \{p_i, p_j\} = 0$ DH model
 $\{x_i, p_j\} = \delta_{ij}$
 Berry phase in momentum space
 $\tilde{A}_i = f(p^2)(\vec{x} \cdot \vec{p})p_i, \quad \begin{cases} x_i, x_j\} = \frac{f(p^2)\epsilon_{ij}}{1-p^2f(p^2)} \epsilon_{k\ell}x_k p_\ell, \\ \{x_i, p_j\} = \delta_{ij} + \frac{f(p^2)}{1-p^2f(p^2)}p_i p_j
 \end{cases}$
 1) $f = \frac{\theta}{1+p^2\theta}$
 H.S. Snyder, Phys. Rev. 71, 38 (1947)
 2) $f \to \infty, \ H = \kappa \ln(p^2/2)$
 Conserved q. $G_i = p_i t + \frac{p^2}{2\kappa}x_i$
 $\{G_i, p_j\} = \frac{\delta_{ij}p^2 - 2p_i p_j}{2\kappa}, \\ \{H, G_i\} = p_i, \ \{G_i, G_j\} = 0
 \end{cases}$

 κ -deformed Galilei algebra $\{H, p_i, J, G_i\}$

de Azcarraga *et al. J. Math. Phys.* **36**, 6879 (1995)

└─General noncommutative mechanics

└─Physical origin of the exotic structure

Group Coadjoint Orbit SO(2,1)

$$\begin{split} \Omega_r &= dp_{\alpha} \wedge dx^{\alpha} + \frac{s}{2} \epsilon^{\alpha\beta\gamma} \frac{p_{\alpha} dp_{\beta} \wedge dp_{\gamma}}{(p^2)^{3/2}} \,, \\ H_r &= \frac{1}{2m} (p^2 - m^2 c^2) \,. \end{split}$$

🔋 L. Fehér, Ph. D. Thesis (1987);

 $\begin{array}{c|c} \hline \blacksquare & \text{Skagerstam}, \text{ Stern, Int. Journ. Mod. Phys. A 5, 1575 (1990)} \\ \text{Lorentz alg.} & J_{\mu} = \epsilon_{\mu\nu\rho} x^{\nu} p^{\rho} + s \frac{p_{\mu}}{\sqrt{p^2}}, \quad \{J^{\alpha}, J^{\beta}\} = \epsilon^{\alpha\beta\gamma} J_{\gamma}, \\ \text{Jackiw-Nair limit} & s/c^2 \to m^2\theta \\ c \to \infty & H_r \to 0 \end{array} \Rightarrow \qquad \begin{array}{c} \Omega_r \Big|_{H_r=0} \to \Omega_0 \\ \frac{\epsilon_{ij} J^j}{c} \to K_i = mx_i - p_i t + m\theta\epsilon_{ij} \\ \frac{\epsilon_{ij} J^j}{c} \to K_i = mx_i - p_i t + m\theta\epsilon_{ij} \\ \end{array}$

Nonlinear Systems: Theory and Applications LE41 2011/'12 - Seiberg-Witten equivalence in E.M. interactions

Minimal substitution/addition

minimal addition for NC variables - Souriau method

DH - model $\mathcal{L}_{DH-em} = \mathcal{L}_{DH} + e \left(A_i \dot{x}_i + A_0\right)$

minimal substitution for NC variables

$$\begin{split} \widetilde{\mathcal{L}}_{ext} &= P_i \dot{X}_i + \frac{\theta}{2} \varepsilon_{ij} P_i \dot{P}_j - \frac{1}{2} (P_i - e \hat{A}_i)^2 + e \hat{A}_0 \\ \delta \hat{A}_\mu (\vec{X}, t) &= \hat{A}'_\mu (\vec{X} + \delta \vec{X}, t) - \hat{A}_\mu (\vec{X}, t) = \partial_\mu \Lambda (\vec{X}, t) \\ \delta X_i &= -e \theta \epsilon_{ij} \partial_j \Lambda, \quad \delta P_i = e \partial_i \Lambda \\ &\Rightarrow \delta \widetilde{\mathcal{L}}_{ext} = e \frac{d}{dt} \left(\Lambda + \frac{\theta}{2} \varepsilon_{ij} \partial_i \Lambda p_j \right) \end{split}$$

・ロト ・ ロト ・ ヨト ・ ヨー ・ うへで

Nonlinear Systems: Theory and Applications LE41 2011/'12 - Seiberg-Witten equivalence in E.M. interactions

Minimal substitution/addition

minimal addition for NC variables - Souriau method

DH - model $\mathcal{L}_{DH-em} = \mathcal{L}_{DH} + e(A_i\dot{x}_i + A_0)$

$$\begin{array}{ll} \text{local gauge T.} & A_{\mu}(\vec{x},t) \to A_{\mu}(\vec{x},t) + \partial_{\mu} \Lambda(\vec{x},t) \\ \text{Gauge Invariance} & \mathcal{L}_{DH-em} \to \mathcal{L}_{DH-em} + \frac{d}{dt} \Lambda \end{array}$$

minimal substitution for NC variables

$$\begin{split} \widetilde{\mathcal{L}}_{ext} &= P_i \dot{X}_i + \frac{\theta}{2} \varepsilon_{ij} P_i \dot{P}_j - \frac{1}{2} (P_i - e \hat{A}_i)^2 + e \hat{A}_0 \\ \delta \hat{A}_\mu (\vec{X}, t) &= \hat{A}'_\mu (\vec{X} + \delta \vec{X}, t) - \hat{A}_\mu (\vec{X}, t) = \partial_\mu \Lambda (\vec{X}, t) \\ \delta X_i &= -e \theta \epsilon_{ij} \partial_j \Lambda, \quad \delta P_i = e \partial_i \Lambda \\ &\Rightarrow \delta \widetilde{\mathcal{L}}_{ext} = e \frac{d}{dt} \left(\Lambda + \frac{\theta}{2} \varepsilon_{ij} \partial_i \Lambda p_j \right) \end{split}$$

└se Generalized Gauge Transf.

$$\begin{split} \delta_{0}\hat{A}_{\mu}(\vec{X},t) &:= \hat{A}'_{\mu}(\vec{X},t) - \hat{A}_{\mu}(\vec{X},t) = \partial_{\mu}\Lambda(\vec{X},t) + e\{\hat{A}_{\mu}(\vec{X},t),\Lambda(\vec{X},t)\}\\ \hat{F}_{\mu\nu} &= \partial_{\mu}\hat{A}_{\nu} - \partial_{\nu}\hat{A}_{\mu} + e\{\hat{A}_{\mu},\hat{A}_{\nu}\} \qquad (\{X_{i},X_{j}\}_{LSZ} = \theta\delta_{ij}) \end{split}$$

R. Jackiw, *Phys. Rev. Lett.* **41**(1978) 1635

LSZ - DH correspondence

$$\begin{aligned} & (X_i, P_i)_{(LSZ)} \leftrightarrow (x_i, p_i)_{(DH)}, & \widehat{A}_{\mu}(\overrightarrow{X}, t) \rightarrow A_{\mu}(\overrightarrow{x}, t) \\ & x_i = X_i + e\theta\varepsilon_{ij}\widehat{A}_j(\overrightarrow{X}, t), & p_i = P_i - e\widehat{A}_j(\overrightarrow{X}, t) \\ & \delta x_i = 0 \quad \Rightarrow \delta_0 x_i = e\{x_i, \Lambda\} \\ & \{x_i, x_j\}_{DH} = \frac{\theta}{1 - e\theta B(\overrightarrow{x}, t)}, & \Leftrightarrow B(\overrightarrow{x}, t) = & \frac{\widehat{B}\left(\overrightarrow{X}, t\right)}{1 + e\theta \widehat{B}\left(\overrightarrow{X}, t\right)} \\ & F_{\mu\nu}(\overrightarrow{x}, t) = & \frac{\widehat{F}_{\mu\nu}(\overrightarrow{X}, t)}{1 + e\theta \widehat{B}(\overrightarrow{X}, t)} \end{aligned}$$

classical $(*_{Moyal} \rightarrow \cdot)$ Seiberg-Witten transformation

Non canonical systems in 3D

$$\dot{\mathbf{r}} = \frac{\partial \epsilon_n(\mathbf{k})}{\partial \mathbf{k}} - \dot{\mathbf{k}} \times \vec{\Theta}(\mathbf{k}), \quad \dot{\mathbf{k}} = -e\mathbf{E} - e\dot{\mathbf{r}} \times \mathbf{B}(\mathbf{r}) \qquad \text{(Bloch electron)}$$

$$\dot{\mathbf{r}} = \frac{\partial E_s(\mathbf{k})}{\partial \mathbf{k}} + \dot{\mathbf{k}} \times \vec{\Theta}_s, \quad \dot{\mathbf{k}} = -e\vec{E}, \qquad \text{(Spin-Hall effect)}$$

$$E_s(\mathbf{k}) = \frac{\hbar^2}{2m} \left(A - Bs^2\right) k^2, \quad \vec{\Theta}_s = s \left(2s^2 - \frac{7}{2}\right) \frac{\vec{k}}{k^3}, \qquad s = \pm \frac{1}{2}, \pm \frac{3}{2}$$

$$\dot{\vec{r}} = \vec{p} - \frac{s}{\omega} \operatorname{grad}(\frac{1}{n}) \times \vec{p}, \qquad \dot{\vec{p}} = -n^3 \omega^2 \operatorname{grad}(\frac{1}{n}), \qquad \text{(Optical Magnus)}$$

$$M\left(\frac{\partial A_j}{\partial q^i}\right) \dot{\vec{q}} + \vec{F} \times \vec{r} = -\frac{\partial h}{\partial \vec{r}}, \qquad M\dot{\vec{r}} = \frac{\partial h}{\partial \vec{q}}, \qquad \text{(Bogoliubov q-particle)}$$

$$\dot{x}_i = \frac{p_i}{m} + \Theta_{ij} \frac{\partial V}{\partial x_j}, \qquad \dot{p}_i = -m \frac{\partial V}{\partial x_j} + m \Theta_{ij} \frac{\partial^2 V}{\partial x_i \partial x_j} \qquad \text{(NC Kepler problem)}$$

Nonlinear Systems: Theory and Applications LE41 2011/'12 Lagrange-Souriau 2-form

Lagrange-Souriau 2-form

2D)
$$\sigma_{DH} = dp_i \wedge dx_i + \frac{1}{2} \theta \epsilon_{ij} dp_i \wedge dp_j + eB dx_1 \wedge dx_2 + d\left(\frac{\vec{p}^2}{2m} + eV\right) \wedge dt$$

$$3D) \sigma = [(1 - \mu_i) dp_i - e E_i dt] \wedge (dr_i - g_i dt) + \frac{1}{2} e B_k \epsilon_{kij} dr_i \wedge dr_j \\ \frac{1}{2} \kappa_k \epsilon_{kij} dp_i \wedge dp_j + q_k \epsilon_{kij} dr_i \wedge dp_j$$

only gauge invariant quantities

closure condition $d\sigma = 0$ (Maxwell's principle)Kernel condition $\sigma (\delta y, \cdot) = 0, \ \delta y = (\delta \vec{r}, \delta \vec{p}, \delta t)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = 釣�?

Nonlinear Systems: Theory and Applications LE41 2011/'12 Lagrange-Souriau 2-form Dual Maxwell Laws

Dual Maxwell Laws

 $\begin{aligned} \partial_{p_i} E_j &= \partial_{p_i} B_j = 0 \\ \partial_{r_j} B_j &= 0, & \varepsilon_{kij} \partial_{r_i} E_j = -\partial_t B_k, \\ \partial_{p_j} \kappa_j &= 0, & \varepsilon_{kij} \partial_{p_i} \left[(1 - \mu_j) g_j \right] = \partial_t \kappa_k, \\ \partial_t \mu_i &= \partial_{r_i} \left[(1 - \mu_i) g_i \right], & \frac{1}{2} \varepsilon_{kij} \partial_{r_i} \left[(1 - \mu_j) g_j \right] = \partial_t q_k, \\ \partial_{r_i} \mu_j &= \varepsilon_{ijk} \partial_{r_j} q_k, & \partial_{r_i} \kappa_j &= \varepsilon_{ijk} \partial_{p_k} \mu_i + \partial_{p_i} q_j - \delta_{ij} \partial_{p_k} q_k \\ \partial_{r_j} \left[(1 - \mu_i) g_i \right] + \partial_{r_i} \left[(1 - \mu_j) g_j \right] = 0 & i \neq j = 1, 2, 3 \end{aligned}$

$$\partial_t \left(\sum_i \mu_i \right) + \partial_{r_i} \left[(1 - \mu_i) g_i \right] = 0 \text{ mass conservation}$$

$$\kappa_i = \sum_{j \neq i} \left(r_j \partial_{p_j} q_i \left(\vec{p} \right) - r_i \partial_{p_j} q_j \left(\vec{p} \right) \right) + \chi_i \left(\vec{p} \right)$$

Nonlinear Systems: Theory and Applications LE41 2011/'12 Lagrange-Souriau 2-form Equation of Motion

Equation of Motion

$$\sigma (\delta y, \cdot) = 0 \quad \delta y = (\delta r_i, \delta p_i, \delta t)$$
$$M^* \dot{\vec{r}} = \left((1 - \operatorname{diag}(\mu_i)) \vec{g} + e \,\mathcal{K} M^{-1} \cdot \vec{E} \right)$$
$$M^* \dot{\vec{p}} = \frac{e}{\det(M)} \left(R \,\vec{E} - \vec{g}^{\ T} N \vec{B} \right)$$

$$\begin{aligned} M^{\star} &= M + \left(2 \left(\epsilon_{ijk} \ q_k \right) - e \ \Theta M^{-1} \mathcal{B} \right) \ , M = \mathbf{1} - \operatorname{diag} \left(\mu_i \right) - \left(\epsilon_{ijk} \ q_k \right) \\ \Theta_{ij} &= \epsilon_{ijk} \kappa_k \ , \ \mathcal{B}_{ij} = \epsilon_{ijk} B_k, \qquad \det \left(M \right) \neq \mathbf{0} \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $g_i \equiv p_i$

Nonlinear Systems: Theory and Applications LE41 2011/'12 Lagrange-Souriau 2-form Hamiltonian Structure

Hamiltonian Structure

$$\partial_{t}\vec{\mathcal{A}} = \partial_{t}\vec{\mathcal{R}} \equiv 0 \Rightarrow \sigma = \omega - dH \wedge dt \qquad d\omega = 0,$$

$$\mathcal{H} = \mathcal{E}(\vec{p}, t) + \varphi(\vec{r}, t)$$

$$\omega = \omega_{\alpha\beta} d\xi_{\alpha} \wedge d\xi_{\beta} = (\delta_{i,j} + \Xi_{ij}) dr_{i} \wedge dp_{j} + \frac{1}{2} [\mathcal{B}_{ij} dr_{i} \wedge dr_{j} - \Theta_{ij} dp_{i} \wedge dp_{j}]$$

$$\omega^{\alpha,\beta} = \left(1 - \frac{1}{2} \operatorname{Tr} \left(\Xi^{2} + X \left(1 + 2\Xi\right)\Theta\right)\right)^{-1}$$

$$\left\{ \left(\begin{array}{cc} \Theta + [\Xi,\Theta] & 0\\ 0 & -\mathcal{B} + [\Xi,\mathcal{B}] \end{array}\right) + \left[1 - \frac{1}{6} \operatorname{Tr} \left(\Xi^{2} + \mathcal{B}\Theta\right)\right] \left(\begin{array}{c} 0 & 1\\ -1 & 0 \end{array}\right) + \left(\begin{array}{c} 0 & \left(\Xi^{2} + \mathcal{X}\Theta\right)^{T}\\ - \left(\Xi^{2} + \mathcal{B}\Theta\right) & 0 \end{array}\right) \right\},$$

$$\sqrt{\det\left(\omega_{\alpha\beta}\right)} = 1 - \frac{1}{2} \operatorname{Tr} \left(\Xi^{2} + \mathcal{B}\left(1 + 2\Xi\right)\Theta\right) \neq 0$$

Monopole in Momentum Space

$$\Theta = heta rac{{f k}}{k^3} \qquad (k
eq 0)$$

A. Bérard, H. Mohrbach *Phys. Rev.*(2004)

$$B \equiv 0, \quad \vec{E} = E\hat{x}, \quad \epsilon_n(\mathbf{k}) = \mathbf{k}^2/2$$

 $\mathbf{r}(t) = x(t)\hat{\mathbf{k}}_0 + y(t)\hat{\mathbf{E}} + z(t)\hat{\mathbf{n}}, \qquad \hat{\mathbf{k}}_0 \perp \hat{\mathbf{E}}, \quad \hat{\mathbf{n}} = \frac{\mathbf{k}_0 \wedge \mathbf{E}}{k_0 E}$
 $z(t) = \frac{\theta}{k_0} \frac{eEt}{\sqrt{k_0^2 + e^2 E^2 t^2}} \Rightarrow \quad \Delta z = \frac{2\theta}{k_0}$

Fang et al.*Science* **302**, 92 (2003)

Perovskite structure: *SrRuO*₃, AHE, Rashba-Dresselhaus spin-orbit Hamiltonian

$$\mathcal{H} = \sum_{i} f_i(\mathbf{k}) \sigma_i$$

Charge in Magnetic and Dual Monopole

$$M^*\dot{r}_i = \left(p_i - e\theta \frac{r_i}{|\vec{p}||\vec{r}|^3}\right)|\vec{r}|^3|\vec{p}|^3,$$

$$M^*\dot{p}_i = e\varepsilon_{ijk}p_jr_k|\vec{p}|^3$$

$$M^* = |\vec{r}|^3|\vec{p}|^3 - e\theta \ \vec{r} \cdot \vec{p}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

D. J. P. Morris et al. *Science* **326**, 411 (2009)

LDouble Monopole

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへ⊙

Conclusions and Outlook

- Generalized models of noncommutative mechanics can be considered
- Quantization of the exotic models allows to identify the classical analogs of the Anyons
- The second central extension can be considered as a nonrelativistic shadow of the particle spin in relativistic models.
- In noncommutative models the Minimal Coupling and the Minimal Addition of a gauge field are not equivalent procedures (modulo total time derivatives). A local Seiberg-Witten transformations allows to map systems in different phase spaces (endowed with different symplectic structure) and fields acting on, in order to obtain the same physical results.
- Monopoles in momentum space can be conveniently described in the presented formalism.
- The general Hamiltonian Structure of systems described by non commutative configuration variables is described.