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The Standard CR Problem

QED with Dirac Fermion ψ = (ψL, ψR)
charge e under Ue(1)

Dirac Monopole with magnetic charge m
under Ue(1)

Dirac Quantization Condition em ∈ Z

Weak e coupling, so free theory
outside monopole core

Heavy monopole with tiny core (∼ MW )
(background)



Direction-Lock

in-going wave
Decompose modes in angular momentum
J = L+ S − 1

2emr̂ ← monopole contrib.

From Dirac equation, fixed
direction of motion (in/out-going wave)

s-wave direction

ψ+
L in

ψ+
R out

ψ−
L out

ψ−
R in

Outside s-wave, both directions exist



Focus on s-wave

Throw fermion at the monopole..

Try to conserve charges:

U(1)e and U(1)A (chirality)

Matching doable outside s-wave
where scattering is trivial at low energies.

Matching impossible for the s-wave.
s-wave direction

ψ+
L in

ψ+
R out

ψ−
L out

ψ−
R in

p-wave direction

ψ+
L both

ψ+
R both

ψ−
L both

ψ−
R both



Focus on s-wave

..and see it bounce back

Try to conserve charges:

U(1)e and U(1)A (chirality)

Matching doable outside s-wave
where scattering is trivial at low energies.
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What gives way?

Break U(1)e

Because of the gauging, the monopole must absorb the charge and turn into a dyon

Break U(1)A

Can be achieved if we have a chiral condensate ⟨ψψ⟩

We need a UV completion to decide!



SU(2)c UV completion

Can embed U(1)e into SU(2)c. Monopole becomes regular!

Nf Weyl fermions in of SU(2)c −→ Flavor symmetry of SU(Nf)

ψi ,a, i = 1, . . .Nf , a = 1, 2 ∈ SU(2)c. Nf = 2Z to avoid Witten anomaly.

Higgs in adjoint of SU(2)c, A
3
µ = AIR

µ

(
1
2
−1

2

)
2Nf Weyl fermions ψi ,± → Nf ψ

i
Dirac =

(
ψi+

(ψi−)c

)
.
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SU(2)c UV completion

When Nf = 2, Rubakov found a condensate ⟨ϵabϵijϵαβψi ,a,αψj ,b,β⟩ , U(1)A → Z2

ψ1+
L → ψ+

2,R , ψ1−
R → ψ−

2,L ψ2+
L → ψ+

1,R , ψ2−
R → ψ−

1,L

Effective boundary condition in the IR theory
ψi+
L |r=0 = ϵij(ψj−

L )∗|r=0

is fixed by the IR symmetries we want to preserve,
and completely determines the scattering

Punchline: Either fix the boundary condition at low energies,
or do a UV computation of the condensate.



Nf ≥ 4? Fractional Charges and Semitons

Assume we preserve U(1)e and SU(Nf)V at low energies.

The condensate is ⟨ϵi1i2i3i4ψi1ψi2 ψi3ψi4⟩ (more ϵ’s hidden)

ψ1+
L + ψ2+

L → ψ+
3,R + ψ+

4,R OK

ψ1+
L → ψ+

3,R + ψ+
4,R + ψ−

2,R ←− ingoing!

When Nf = 4 the effective boundary condition cannot be written directly.

Conserve U(1)e and Cartan of SU(4)V : U(1)1−2 U(1)2−3 U(1)3−4

ψ1+
L → 1

2ψ
−
1,L +

1
2ψ

+
2,R + 1

2ψ
+
3,R + 1

2ψ
+
4,R(

Contrast with µ− → e− + νµ + ν̄e
)
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Proposed solutions

• Leave s-wave [Csaki et al. 2009.14213, 2109.01145]

• Global symmetries are broken (by condensates)

• Light d.o.f. on monopole worldline (dyons, JR zero-modes)
[Brennan 2309.00680]

• Need massive fermions/non-Fock representations and soft radiation
[Brennan 2109.11207]

• UV completion does not exist?

• Generalized Symmetries [Marieke van Beest, Philip Boyle Smith,
Diego Delmastro, Zohar Komargodski, David Tong 2306.07318]

Kitano&Matsudo [’21], Hamada&al.[’22], Loladze&Okui[’24], Hook&Ristow[’24],
. . .
P.B. Smith & D. Tong



A Chiral Example

We want a UV asymptotically free SU(N)c chiral gauge theory.

To get a U(1) theory in the IR, one possibility is to break SU(N)c to the Cartan.

The (N − 1) U(1)’s can embed into SU(N)c as Diag(. . . , 0, 1,−1, 0, . . . ),
same as for SU(2)c example earlier! Locally vectorial theory.

ψχη model ⊕ ⊕ 8 ψ(ab), χ[ab], ηai . Adj Higgs Φ
a
b SU(N)c → U(1)N−1

Gauge anomaly free. Yukawa yΦa
bψ

(bc)χ[ac] gaps many modes.
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We can check..

Leveraging the regularity of the core, we can check..

• Absence of dyons with Mdyon −Mmonopole ∼ Escattering

• Absence of JR zero-modes

• Presence of a single condensate, which only breaks anomalous global
symmetries

• Check that boundary conditions at r = 0 preserve the remaining symmetries

Idea: Go to regular gauge, study fluctuations regular at the origin.

This forces the correct boundary conditions!



IR Theory, Monopole in U(1)a

U(1)N−1 gauge theory. ψaa, a = 1, . . . ,N, ηai , i = 1, . . . 8.

U(1)a U(1)a−1 U(1)a+1 U(1)′a SU(8)F SU(2)J dir.

ψa,a 2 -2 0 2 (·) 1/2 in

ψa+1,a+1 -2 0 2 2 (·) 1/2 out

ηai -1 1 0 -1 0 out

ηa+1
i 1 0 -1 -1 0 in



Bosonization

ψa,a,m= 1
2 → 1

2ψ
a+1,a+1,m= 1

2 − 1
2ψ

a+1,a+1,m=− 1
2 − 1

4η
a
i

Still fractional charges..

In 2D, Dirac fermions ψm =

(
ψa,a,m

ψa+1,a+1,m

)
, ηi =

(
ηa+1
i

ηai

)
that bosonize as χℓ/r =: e iϕℓ/r :, χ = ψ± 1

2 , η1...8

Conserved charges fix boundary condition at r = 0 for ϕ’s

⇒ Symmetries fix the S matrix

Qℓϕℓ|r=0 = Qrϕr |r=0, ϕir |r=0 =
∑
j

S i
jϕ

j
ℓ|r=0, S = Q−1

r Qℓ

ψa,a,m= 1
2 =: e iϕ

ψ,1
ℓ :→: e

i
(

1
2
ϕψ,1r − 1

2
ϕψ,2r − 1

4

∑8
i=1 ϕ

η,i
r

)
:=??
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Future Direction

Discrete gauge invariance ϕiℓ,r → ϕiℓ,r + 2πZi
ℓ,r must be restored!

Gauging the shift symmetry, we obtain Wilson lines, which act as symmetry
operators [van Beest et al.]. Topological operators, except at end-points.

W e iSϕr?

Discrete symmetry Zn
ℓ × Zn

r ↔ Continuous charge U(1)nℓ × U(1)nr

Boundary condition is not invariant under generic shift symmetry

ϕir = S i
jϕ

j
ℓ −→ ϕir = S i

jϕ
j
ℓ + θi

This restricts the allowed gauge transformations on the boundary.



Future Direction

A Wilson line of the shift sym. can connect the OUT fermions to the monopole.

M
W e iSϕr

This extended object is fully gauge invariant except at monopole,
where shift sym. is broken by boundary condition anyway.

Gauge invariant correlators have no monodromy.

M
e iϕℓ

e iϕℓ

t

M
W e iSϕr

W e iSϕr



Thank You!



Adding a Mass Term

What happens to the Wilson line if we are in QED
and we give mass mi to the fermions?

λc

W T ψ
M

Decay rate of string to simple fermions ∝ ⟨ferm.i |mi ψ̄
iψi |stringi ⟩ ∝ mi

At r ≫ λc, fewer symmetries can be imposed and ψi
ℓ → ψi

r .
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