Fermion-Monopole Scattering in a Chiral Gauge Theory

Bruno Bucciotti

Scuola Normale Superiore and INFN, Pisa

Theories of Fundamental Interactions

Naples, September 25 2024

[2406.15552, W.I.P.], with Stefano Bolognesi and Andrea Luzio

1. [Introduction to Callan-Rubakov Problem](#page-2-0) [Standard and less standard examples](#page-2-0)

[Proposed solutions](#page-19-0)

2. [A Chiral example](#page-20-0)

3. [Future directions](#page-27-0)

QED with Dirac Fermion $\psi = (\psi_I, \psi_R)$ charge e under $U_e(1)$

Dirac Monopole with magnetic charge m under $U_e(1)$

Dirac Quantization Condition em $\in \mathbb{Z}$

Weak *e* coupling, so free theory outside monopole core

Heavy monopole with tiny core ($\sim M_W$) (background)

Direction-Lock

in-going wave Decompose modes in angular momentum $J = L + S - \frac{1}{2}$ $\frac{1}{2}$ em $\hat{r} \leftarrow$ monopole contrib.

> From Dirac equation, fixed direction of motion (in/out-going wave)

Outside s-wave, both directions exist

Throw fermion at the monopole..

..and see it bounce back

Try to conserve charges: $U(1)_{e}$ and $U(1)_{A}$ (chirality)

Try to conserve charges:

 $U(1)_{\rm e}$ and $U(1)_{\rm A}$ (chirality)

Matching doable outside s-wave where scattering is trivial at low energies.

Try to conserve charges:

 $U(1)_{\rm e}$ and $U(1)_{\rm A}$ (chirality)

Matching doable outside s-wave where scattering is trivial at low energies.

Matching impossible for the s-wave.

Break $U(1)_{\text{e}}$

Because of the gauging, the monopole must absorb the charge and turn into a dyon

Break $U(1)_{A}$

Can be achieved if we have a chiral condensate $\langle \psi \psi \rangle$

We need a UV completion to decide!

Can embed $U(1)_{e}$ into $SU(2)_{c}$. Monopole becomes regular!

Can embed $U(1)_{\rho}$ into $SU(2)_{c}$. Monopole becomes regular!

 N_f Weyl fermions in \Box of $SU(2)_c$ → Flavor symmetry \Box of $SU(N_f)$ $\psi^{i,\mathsf{a}},\ i=1,\ldots \mathrm{N_{f}},\ \mathsf{a}=1,2\in\mathsf{SU}(2)_{\mathrm{c}}.\quad \mathrm{N_{f}}=2\mathbb{Z}$ to avoid Witten anomaly. Higgs in adjoint of $SU(2)_{\rm c}$, ${\cal A}^3_{\mu} = {\cal A}^{\rm IR}_{\mu}$ $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ 2 \setminus $2\mathrm{N_{f}}$ Weyl fermions $\psi^{i,\pm} \rightarrow \mathrm{N_{f}}$ $\psi^{\text{i}}_{\text{Dirac}} = \begin{pmatrix} \psi^{i+1} \ \psi^{i+1} \end{pmatrix}$ $(\psi^{i-})^c$.

When $\rm N_f=2$, Rubakov found a condensate $\langle\epsilon_{ab}\epsilon_{ij}\epsilon_{\alpha\beta}\psi^{j,a,\alpha}\psi^{j,b,\beta}\rangle\,,\quad U(1)_{\rm A}\to\mathbb{Z}_2$

 $<$

 $\psi_L^{1+} \to \psi_{2,}^+$ $\psi_{R}^{+}, \quad \psi_{R}^{1-} \to \psi_{2,L}^{-} \quad \psi_{L}^{2+} \to \psi_{1,L}^{+}$ $\psi_{R}^{+}, \quad \psi_{R}^{2-} \to \psi_{1}^{-},$ $1,L$

Effective boundary condition in the IR theory ψ_I^{i+} $|l_L^{i+}|_{r=0} = \epsilon^{ij}(\psi_L^{j-1})$ \int_{L}^{j-})* $|r=0$

is fixed by the IR symmetries we want to preserve, and completely determines the scattering

Punchline: Either fix the boundary condition at low energies, or do a UV computation of the condensate.

Assume we preserve $U(1)_{e}$ and $SU(N_{f})_{V}$ at low energies.

Assume we preserve $U(1)_{\rm e}$ and $SU(N_{\rm f})_{\rm V}$ at low energies.

The condensate is $\langle\epsilon_{i_1i_2i_3i_4}\psi^{i_1}\psi^{i_2}\psi^{i_3}\psi^{i_4}\rangle$ $\pmod{\epsilon}$'s hidden)

Assume we preserve $U(1)_{\rm e}$ and $SU(N_{\rm f})_{\rm V}$ at low energies.

The condensate is $\langle\epsilon_{i_1i_2i_3i_4}\psi^{i_1}\psi^{i_2}\psi^{i_3}\psi^{i_4}\rangle$ $\pmod{\epsilon}$'s hidden)

 $\psi_L^{1+} + \psi_L^{2+} \to \psi_{3,R}^+ + \psi_{4,R}^+$ OK

Assume we preserve $U(1)_{\rm e}$ and $SU(N_{\rm f})_{\rm V}$ at low energies.

The condensate is $\langle\epsilon_{i_1i_2i_3i_4}\psi^{i_1}\psi^{i_2}\psi^{i_3}\psi^{i_4}\rangle$ $\pmod{\epsilon}$'s hidden)

$$
\psi_L^{1+} + \psi_L^{2+} \rightarrow \psi_{3,R}^+ + \psi_{4,R}^+
$$
 OK

$$
\psi_L^{1+} \rightarrow \psi_{3,R}^+ + \psi_{4,R}^+ + (\psi_{2,R}^-) \longleftarrow
$$
 ingoing!

Assume we preserve $U(1)_{\text{e}}$ and $SU(N_f)_V$ at low energies.

The condensate is $\langle\epsilon_{i_1i_2i_3i_4}\psi^{i_1}\psi^{i_2}\psi^{i_3}\psi^{i_4}\rangle$ $\pmod{\epsilon}$'s hidden)

$$
\psi_L^{1+} + \psi_L^{2+} \rightarrow \psi_{3,R}^+ + \psi_{4,R}^+ \quad \text{OK}
$$

$$
\psi_L^{1+} \rightarrow \psi_{3,R}^+ + \psi_{4,R}^+ + (\psi_{2,R}^-) \longleftarrow \text{ingoing!}
$$

When $N_f = 4$ the effective boundary condition cannot be written directly. Conserve $U(1)_{e}$ and Cartan of $SU(4)_{V}$: $U(1)_{1-2} U(1)_{2-3} U(1)_{3-4}$

Assume we preserve $U(1)_{\rho}$ and $SU(N_f)_V$ at low energies.

The condensate is $\langle\epsilon_{i_1i_2i_3i_4}\psi^{i_1}\psi^{i_2}\psi^{i_3}\psi^{i_4}\rangle$ $\pmod{\epsilon}$'s hidden)

$$
\psi_L^{1+} + \psi_L^{2+} \rightarrow \psi_{3,R}^+ + \psi_{4,R}^+ \quad \text{OK}
$$

$$
\psi_L^{1+} \rightarrow \psi_{3,R}^+ + \psi_{4,R}^+ + (\psi_{2,R}^-) \longleftarrow \text{ingoing!}
$$

When $N_f = 4$ the effective boundary condition cannot be written directly. Conserve $U(1)_{e}$ and Cartan of $SU(4)_{V}$: $U(1)_{1-2}$ $U(1)_{2-3}$ $U(1)_{3-4}$ $\psi_L^{1+} \to \frac{1}{2} \psi_{1,L}^- + \frac{1}{2}$ $\frac{1}{2}\psi^+_{2,R} + \frac{1}{2}$ $\frac{1}{2}\psi_{3,R}^+ + \frac{1}{2}$ $\frac{1}{2}\psi_{4}^{+}$ $4, R$ (Contrast with $\mu^- \to e^- + \nu_\mu + \bar{\nu}_e$)

- • Leave s-wave [Csaki et al. 2009.14213, 2109.01145]
- Global symmetries are broken (by condensates)
- Light d.o.f. on monopole worldline (dyons, JR zero-modes) [Brennan 2309.00680]
- Need massive fermions/non-Fock representations and soft radiation [Brennan 2109.11207]
- UV completion does not exist?
- Generalized Symmetries [Marieke van Beest, Philip Boyle Smith, Diego Delmastro, Zohar Komargodski, David Tong 2306.07318]

Kitano&Matsudo ['21], Hamada&al.['22], Loladze&Okui['24], Hook&Ristow['24],

P.B. Smith & D. Tong

. . .

We want a UV asymptotically free $SU(N)_{c}$ chiral gauge theory. To get a $U(1)$ theory in the IR, one possibility is to break $SU(N)_{c}$ to the Cartan. The $(N - 1)$ U(1)'s can embed into $SU(N)_{c}$ as $Diag(\ldots, 0, 1, -1, 0, \ldots)$, same as for $SU(2)_{c}$ example earlier! Locally vectorial theory.

We want a UV asymptotically free $SU(N)_c$ chiral gauge theory.

To get a $U(1)$ theory in the IR, one possibility is to break $SU(N)_{c}$ to the Cartan. The $(N-1)$ U(1)'s can embed into $SU(N)_c$ as $Diag(\ldots,0,1,-1,0,\ldots)$, same as for $SU(2)_c$ example earlier! Locally vectorial theory.

 $\psi\chi\eta$ model $\Box\oplus\Box\oplus\Box\quad \psi^{(\sf{ab})},\ \chi^{[\sf{ab}]},\ \eta^{\sf{a}}_i$. Adj Higgs $\Phi^{\sf{a}}_b$ $SU(N)_{\rm c}\to U(1)^{N-1}$

Gauge anomaly free. Yukawa y $\Phi_{b}^{a}\psi^{(bc)}\chi_{[ac]}$ gaps many modes.

Leveraging the regularity of the core, we can check..

- Absence of dyons with $M_{\text{dvon}} M_{\text{monopole}} \sim E_{scattering}$
- Absence of IR zero-modes
- Presence of a single condensate, which only breaks anomalous global symmetries
- Check that boundary conditions at $r = 0$ preserve the remaining symmetries

Idea: Go to regular gauge, study fluctuations regular at the origin.

This forces the correct boundary conditions!

IR Theory, Monopole in $U(1)_a$

$$
U(1)^{N-1}
$$
 gauge theory. ψ^{aa} , $a = 1, ..., N$, η_i^a , $i = 1, ... 8$.

Bosonization

$$
\psi^{\mathsf{a},\mathsf{a},\mathsf{m}=\frac{1}{2}}\rightarrow\frac{1}{2}\psi^{\mathsf{a}+1,\mathsf{a}+1,\mathsf{m}=\frac{1}{2}}-\frac{1}{2}\psi^{\mathsf{a}+1,\mathsf{a}+1,\mathsf{m}=-\frac{1}{2}}-\frac{1}{4}\eta_{\mathsf{i}}^{\mathsf{a}}
$$

Still fractional charges..

Bosonization

$$
\psi^{\mathsf{a},\mathsf{a},\mathsf{m}=\frac{1}{2}}\rightarrow\frac{1}{2}\psi^{\mathsf{a}+1,\mathsf{a}+1,\mathsf{m}=\frac{1}{2}}-\frac{1}{2}\psi^{\mathsf{a}+1,\mathsf{a}+1,\mathsf{m}=-\frac{1}{2}}-\frac{1}{4}\eta_{\mathsf{i}}^{\mathsf{a}}
$$

Still fractional charges..

In 2D, Dirac fermions
$$
\psi^m = \begin{pmatrix} \psi^{a,a,m} \\ \psi^{a+1,a+1,m} \end{pmatrix}
$$
, $\eta_i = \begin{pmatrix} \eta_i^{a+1} \\ \eta_i^a \end{pmatrix}$
that bosonize as $\chi_{\ell/r} =: e^{i\phi_{\ell/r}} : , \quad \chi = \psi^{\pm \frac{1}{2}}, \eta_{1...8}$

$$
\psi^{\mathsf{a},\mathsf{a},\mathsf{m}=\frac{1}{2}}\rightarrow\frac{1}{2}\psi^{\mathsf{a}+1,\mathsf{a}+1,\mathsf{m}=\frac{1}{2}}-\frac{1}{2}\psi^{\mathsf{a}+1,\mathsf{a}+1,\mathsf{m}=-\frac{1}{2}}-\frac{1}{4}\eta_{\mathsf{i}}^{\mathsf{a}}
$$

Still fractional charges..

In 2D, Dirac fermions $\psi^m = \begin{pmatrix} \psi^{a,a,m} \ \psi^{a,a,m} \end{pmatrix}$ $\psi^{ \mathsf{a} + \mathsf{1}, \mathsf{a} + \mathsf{1}, m }$ $\eta_i = \begin{pmatrix} \eta_i^{a+1} \\ \eta_i^{a+1} \end{pmatrix}$ i η a i \setminus that bosonize as $\chi_{\ell/r}=:e^{i\phi_{\ell/r}}:,\quad \chi=\psi^{\pm\frac{1}{2}},\,\eta_{1...8}$

Conserved charges fix boundary condition at $r = 0$ for ϕ 's \Rightarrow Symmetries fix the S matrix

$$
Q_{\ell}\phi_{\ell}|_{r=0} = Q_r \phi_r|_{r=0}, \quad \phi_r^i|_{r=0} = \sum_j S^i_j \phi_{\ell}^j|_{r=0}, \quad S = Q_r^{-1} Q_{\ell}
$$

$$
\psi^{a,a,m=\frac{1}{2}} =: e^{i\phi_{\ell}^{\psi,1}} : \to : e^{i\left(\frac{1}{2}\phi_{r}^{\psi,1} - \frac{1}{2}\phi_{r}^{\psi,2} - \frac{1}{4}\sum_{i=1}^{8}\phi_{r}^{\eta,i}\right)} : = ?
$$

Discrete gauge invariance $\phi^i_{\ell,r}\to \phi^i_{\ell,r}+2\pi \mathbb{Z}^i_{\ell,r}$ must be restored!

Gauging the shift symmetry, we obtain Wilson lines, which act as symmetry operators [van Beest et al.]. Topological operators, except at end-points.

$$
\text{maxmax}_{\text{min}}^{\text{max}}(\text{min}_{\text{min}}^{\text{min}})
$$

Discrete symmetry $\mathbb{Z}_{\ell}^n\times \mathbb{Z}_r^n \leftrightarrow \text{Continuous charge } U(1)_{\ell}^n\times U(1)_r^n$ Boundary condition is not invariant under generic shift symmetry

$$
\phi^i_r = S^i_j \phi^j_\ell \longrightarrow \phi^i_r = S^i_j \phi^j_\ell + \theta^i
$$

This restricts the allowed gauge transformations on the boundary.

Future Direction

A Wilson line of the shift sym. can connect the OUT fermions to the monopole.

$$
M \bigotimes_{\mathbf{W}} \mathbf{W} \mathbf
$$

This extended object is fully gauge invariant except at monopole, where shift sym. is broken by boundary condition anyway.

Gauge invariant correlators have no monodromy.

Thank You!

What happens to the Wilson line if we are in QED and we give mass m_i to the fermions?

Decay rate of string to simple fermions $\propto \langle$ ferm. $_i | m_i \bar{\psi}^i \psi^i |$ string $_i \rangle \propto m_i$

At $r\gg\lambda_{\rm c}$, fewer symmetries can be imposed and $\psi^i_\ell\to\psi^i_r.$