Aspects of Generalized Symmetries A high-energy physicist's perspective

Francesco Benini

SISSA (Trieste)

TFI 2024 25 September 2024, Napoli (Italy)

Generalized symmetries

New paradigm:

symmetries in (Euclidean) QFT = topological defect operators, of any dimension

[Gaiotto, Kapustin, Seiberg, Willett 14]

★ This leads to a substantial widening of the concept of symmetry, as well as of all related constructions and consequences.

★ U(1) symmetry:

conserved current conserved charge unitary operators operators in reps:

$$\begin{split} \partial^{\mu} j_{\mu}(x) &= 0\\ Q &= \int_{\Sigma} d^{d-1} x \, j_{0}\\ U_{\alpha} &= e^{i\alpha Q} \quad \text{with } \alpha \in U(1)\\ U_{\alpha} \, \mathcal{O}_{q} &= e^{i\alpha q} \, \mathcal{O}_{q} \, U_{\alpha} \end{split}$$

 $\begin{array}{ll} \star & U(1) \text{ symmetry:} & \text{conserved current} & \partial^{\mu}j_{\mu}(x) = 0 \\ & \text{conserved charge} & Q = \int_{\Sigma} d^{d-1}x \, j_0 \\ & \text{unitary operators} & U_{\alpha} = e^{i\alpha Q} & \text{with } \alpha \in U(1) \\ & \text{operators in reps:} & U_{\alpha} \, \mathcal{O}_q = e^{i\alpha q} \, \mathcal{O}_q \, U_{\alpha} \end{array}$

★ Standard 0-form symmetry G: codimension-1 defects $U_g[\Sigma]$, $g \in G$ along submanifolds Σ

that fuse according to group structure of G:

$$U_g \times U_h = U_{gh}$$

Σ

 $\overset{\mathcal{O}}{\bullet} \xrightarrow{R_g[\mathcal{O}]} \bullet$

and act on local operators through representations:

Charge conservation = topological character of defects

 Symmetry defects allow us to treat finite symmetries (e.g. charge conjugation) on equal footing Various new structures:

• Defects of higher codimension: *p*-form symmetries (necessarily Abelian) Charges carried by *p*-dimensional extended operators

$$\underbrace{\bullet \mathcal{O}_q}^{U_\alpha} = e^{i\alpha q} \bullet \mathcal{O}_q$$

$$\underbrace{\bigwedge}_{I \ U_{g}[\Sigma_{d-p-1}]}^{\mathcal{L}[\ell_{p}]}$$

Various new structures:

• Defects of higher codimension: *p*-form symmetries (necessarily Abelian) Charges carried by *p*-dimensional extended operators

$$\underbrace{\bullet \mathcal{O}_q}^{U_\alpha} = e^{i\alpha q} \bullet \mathcal{O}_q \qquad \qquad \underbrace{\frown}_{U_g[\Sigma_{d-p-1}]}^{\mathcal{L}[\ell_p]}$$

• Symmetries that act on other symmetries (*e.g.*, *n*-groups):

[Baez, Lauda 03]

from [FB, Cordova, Hsin 18]

• Fusion algebras instead of groups

$$U_a \times U_b = \sum_c N_{ab}^c \ U_c$$

Familiar from Verlinde lines in 2d RCFT's

• Fusion algebras instead of groups

$$U_a \times U_b = \sum_c N_{ab}^c \ U_c$$

Familiar from Verlinde lines in 2d RCFT's

• TQFT coefficients: $N_{ab}^c \rightarrow Z_{\mathsf{TQFT}}[\Sigma_{d-p-1}]$ [Roumpedakis, Seifnashri, Shao 22]

 Symmetries obtained by "condensing" other symmetries on submanifolds (gauging)
 [Roumpedakis, Seifnashri, Shao 22]

★ Symmetries no longer characterized by groups

→ "Categorical" or "Non-invertible" symmetries

"Background fields"

In QFT many physical quantities become manifest by turning on background fields

 Insertions of networks of symmetry defects play the role of (flat) background fields

- *E.g.*: flat connections vs symmetry defects on T^2
- Not clear what a background field for a non-invertible symmetry is (because there is no group), but insertions (and sums over them) are well defined.

"Background fields"

In QFT many physical quantities become manifest by turning on background fields

- Insertions of networks of symmetry defects play the role of (flat) background fields
- *E.g.*: flat connections vs symmetry defects on T^2
- Not clear what a background field for a non-invertible symmetry is (because there is no group), but insertions (and sums over them) are well defined.
- Gauging (condensation, generalized orbifolding) represented as a sum over insertions on a mesh

Higher gauging: on a submanifold [Roumpedakis, Seifnashri, Shao 22]

[Fuchs, Runkel, Schweigert '01]

Mathematical Language: Category Theory

In 2 dimensions, (internal, finite) symmetries are described by fusion categories.

Fusion category:

Objects: Tensor product: Morphisms:

Associator or F-symbol:

Language familiar from 2d RCFTs

[Moore, Seiberg 89]

Mathematical Language: Category Theory

In 2 dimensions, (internal, finite) symmetries are described by fusion categories.

Fusion category:

Objects: Tensor product: Morphisms:

Language familiar from 2d RCFTs

[Moore, Seiberg 89]

Includes standard 0-form symmetry G with 't Hooft anomaly: $F \in H^3(BG, U(1))$

Higher categories

In d dimensions: symmetries form a $(d-1)\mbox{-}{\rm category}$

• *n*-category:

Objects 1-morphisms between objects 2-morphisms between 1-morphisms

... *n*-morphisms 0-form symmetry defects junctions of 0-form defects, and 1-form defects junctions of junctions, ...

Higher categories

In d dimensions: symmetries form a $(d-1)\mbox{-}{\rm category}$

• *n*-category:

```
Objects 0-1
1-morphisms between objects jur
2-morphisms between 1-morphisms jur
```

```
n-morphisms
```


★ For 3d theories, Douglas and Reutter gave a definition of spherical (semi-simple) fusion 2-category
[Douglas, Reutter 18]

Similar definitions exist in higher dimensions. Topic of active research.

Symmetry TFT

 The rigid structure of the symmetry is captured by a Topological Quantum Field Theory (TQFT) in one higher dimension: SymTFT

> [Gaiotto, Kapustin, Seiberg, Willett 14; Gaiotto, Kulp 20] [Apruzzi, Bonetti, García-Etxebarria, Hosseini, Schafer-Nameki 21; Freed, Moore, Teleman 22]

Builds on ideas dating back to Wess and Zumino: anomaly inflow [Wess, Zumino 71]

d+2: anomaly polynomial $\rightarrow d+1$: Chern–Simons TFT $\rightarrow d$: QFT with anomaly

SymTFT is a fully-dynamical TQFT

Symmetry TFT

 The rigid structure of the symmetry is captured by a Topological Quantum Field Theory (TQFT) in one higher dimension: SymTFT

> [Gaiotto, Kapustin, Seiberg, Willett 14; Gaiotto, Kulp 20] [Apruzzi, Bonetti, García-Etxebarria, Hosseini, Schafer-Nameki 21; Freed, Moore, Teleman 22]

Builds on ideas dating back to Wess and Zumino: anomaly inflow [Wess, Zumino 71]

d+2: anomaly polynomial $~\to~d+1:$ Chern–Simons TFT $~\to~d:$ QFT with anomaly SymTFT is a fully-dynamical TQFT

• It appears to capture all aspects of the symmetry: structure, anomalies, global forms, representations, spontaneous breaking, boundary conditions, ...

E.g.: 0-form symmetry G (finite group) with anomaly $F \in H^{d+1}(BG, U(1))$ $\rightarrow (d+1)$ -dimensional G gauge theory with Dijkgraaf–Witten twist F

$$S_{\mathsf{TQFT}} = 2\pi i \int_{X_{d+1}} F(\mathfrak{b})$$
 $\mathfrak{b}: G$ -cocycle [Dijkgraaf, Witten, 89]

(Not always there is a simple state-sum or path-integral description)

"Slab" construction of the Symmetry TFT:

• Top. boundary conditions dictate which bulk operators can end on boundary Those operators are trivialized at the boundary

We call them a "Lagrangian algebra"

"Slab" construction of the Symmetry TFT:

- Top. boundary conditions dictate which bulk operators can end on boundary Those operators are trivialized at the boundary We call them a "Lagrangian algebra"
- Bulk operators modulo Lagrangian algebra

= topological symmetry defects of boundary theory Boundary condition hosts higher category of the symmetry

Fusion in the bulk \Rightarrow fusion on the boundary

"Slab" construction of the Symmetry TFT:

 Operators that end (Lagrangian algebra): charges of physical operators Phases from braiding between Lag. algebra and symmetry defects

[Bhardwaj, Schafer-Nameki 23]

"Slab" construction of the Symmetry TFT:

- Operators that end (Lagrangian algebra): charges of physical operators Phases from braiding between Lag. algebra and symmetry defects
 [Bhardwai, Schafer-Nameki 23]
- Different choices of boundary conditions: global forms of the QFT Related by gauging discrete symmetries in QFT ⇒ topological operations The collection of *all* topological operators that can appear in *any* global variant, and of their topological properties, is part of the Symm TFT

"Slab" construction of the Symmetry TFT:

- Operators that end (Lagrangian algebra): charges of physical operators Phases from braiding between Lag. algebra and symmetry defects
 [Bhardwai, Schafer-Nameki 23]
- Different choices of boundary conditions: global forms of the QFT Related by gauging discrete symmetries in QFT ⇒ topological operations The collection of *all* topological operators that can appear in *any* global variant, and of their topological properties, is part of the Symm TFT
- Anomalies: appear as bulk phases produced under moves Also appears as lack of boundary conditions [Kaidi, Ohmori, Zheng 22]

"Slab" construction of the Symmetry TFT:

• Operators that cannot end on boundary give twisted sectors Representations of both untwisted and twisted sectors

[Lin, Okada, Seifnashri, Tachikawa 22]

Examples of SymTFT's

• \mathbb{Z}_N 0-form symmetry [Maldacena, Moore, Seiberg 01; Banks, Seiberg 10] SymTFT is (d+1)-dim \mathbb{Z}_N gauge theory. Path integral description as BF theory: $S_{\text{SymTFT}} = rac{i}{2\pi} \int A_1 \wedge dB_{d-1}$ A, B: U(1) (p-form) gauge fields

Anomalies: $H^{d+1}(B\mathbb{Z}_N, U(1)) = \mathbb{Z}_N$ for d even. $S_{\text{anom}} \sim k \int A_1 (dA_1)^d$

Examples of SymTFT's

• \mathbb{Z}_N 0-form symmetry [Maldacena, Moore, Seiberg 01; Banks, Seiberg 10] SymTFT is (d + 1)-dim \mathbb{Z}_N gauge theory. Path integral description as BF theory: $S_{\text{SymTFT}} = \frac{i}{2\pi} \int A_1 \wedge dB_{d-1}$ A, B : U(1) (*p*-form) gauge fields

Anomalies: $H^{d+1}(B\mathbb{Z}_N, U(1)) = \mathbb{Z}_N$ for d even. $S_{\text{anom}} \sim k \int A_1 (dA_1)^d$

- * Continuous symmetries: need TQFT with infinite number of simple operators
- U(1) 0-form symmetry [Brennan, Sun 24; Antinucci, FB 24]

SymTFT has path-integral description in terms of $\mathbb R$ and U(1) gauge fields:

$$S_{\mathsf{SymTFT}} = rac{i}{2\pi} \int A_1 \wedge db_{d-1}$$
 A is $U(1)$, b is $\mathbb R$ gauge field

Examples of SymTFT's

• \mathbb{Z}_N 0-form symmetry [Maldacena, Moore, Seiberg 01; Banks, Seiberg 10] SymTFT is (d + 1)-dim \mathbb{Z}_N gauge theory. Path integral description as BF theory: $S_{\text{SymTFT}} = \frac{i}{2\pi} \int A_1 \wedge dB_{d-1}$ A, B : U(1) (*p*-form) gauge fields

Anomalies: $H^{d+1}(B\mathbb{Z}_N, U(1)) = \mathbb{Z}_N$ for d even. $S_{\text{anom}} \sim k \int A_1 (dA_1)^d$

- ★ Continuous symmetries: need TQFT with infinite number of simple operators
- U(1) 0-form symmetry [Brennan, Sun 24; Antinucci, FB 24]

SymTFT has path-integral description in terms of $\mathbb R$ and U(1) gauge fields:

$$S_{\mathsf{SymTFT}} = rac{i}{2\pi} \int A_1 \wedge db_{d-1}$$
 $A \text{ is } U(1), b \text{ is } \mathbb{R}$ gauge field

• *G* simple Lie group [Brennan, Sun 24; Antinucci, FB 24; Bonetti, Del Zotto, Minasian 24] SymTFT is non-Abelian BF theory studied in [Horowitz 89] :

$$S_{\text{SymTFT}} = \frac{i}{2\pi} \int \text{Tr}(b_{d-1} \wedge F_2)$$
 F is field strength of G-connection A

In both cases, chiral anomalies described by Chern-Simons terms.

★ Gauge a 0-form symmetry that acts on a higher-form symmetry (*n*-group). *E.g.*: 4d SU(N) Yang-Mills with \mathbb{Z}_N 1-form symmetry, $U_a \times U_b = U_{a+b}$ gauge charge conjugation $C: U_a \to U_{-a}$.

$$\text{For } a \neq -a: \qquad \qquad \widetilde{U}_a = U_a \oplus U_{-a} \qquad \Rightarrow \qquad \widetilde{U}_a \times \widetilde{U}_b = \widetilde{U}_{a+b} \oplus \widetilde{U}_{a-b}$$

[Bhardwaj, Bottini, Schafer-Nameki, Tiwari 22; Antinucci, Galati, Rizi 22]

★ In 4d QED: Abelian symmetry with ABJ anomaly.

Conserved current is spoiled, but $\mathbb{Q}/\mathbb{Z} \subset U(1)$ survives as non-invertible.

Topological defects constructed via quantum Hall state coupled to photon:

$$d * j = \frac{1}{8\pi^2} F \wedge F \qquad \Rightarrow \qquad U_{\theta = \frac{p}{q}} = \exp\left[2\pi i \,\theta \int_{\Sigma_3} * j\right] \underbrace{Z\left[\mathcal{A}^{q,p}, F\right]}_{\supset \exp\left[\frac{i p/q}{4\pi} \int_{\mathcal{M}_4} F \wedge F\right]}$$

For $\theta = \frac{1}{q}$: $U(1)_1$ CS theory, $Z = \int \mathcal{D}C \ e^{\frac{i}{4\pi} \int q \ C dC + 2 \ C dA}$

★ In 4d QED: Abelian symmetry with ABJ anomaly.

Conserved current is spoiled, but $\mathbb{Q}/\mathbb{Z} \subset U(1)$ survives as non-invertible.

Topological defects constructed via quantum Hall state coupled to photon:

$$d * j = \frac{1}{8\pi^2} F \wedge F \qquad \Rightarrow \qquad U_{\theta = \frac{p}{q}} = \exp\left[2\pi i \,\theta \int_{\Sigma_3} * j\right] \underbrace{Z\left[\mathcal{A}^{q,p},F\right]}_{\supset \exp\left[\frac{i p/q}{4\pi} \int_{\mathcal{M}_4} F \wedge F\right]}$$

For $\theta = \frac{1}{q}$: $U(1)_1$ CS theory, $Z = \int \mathcal{D}C \ e^{\frac{i}{4\pi}\int q \ CdC + 2 \ CdA}$

Part of the algebra:

$$\begin{cases} U_{\frac{p}{q}} \times U_{-\frac{p}{q}} = \mathcal{C}[\mathbb{Z}_q] \\ U_{\frac{p}{q}} \times U_{\frac{\ell}{q}} = \mathcal{A}^{q,(p^{-1}+\ell^{-1})^{-1}} U_{\frac{p+\ell}{q}} & \text{if } \gcd(p+\ell,q) = 1 \end{cases}$$

- * Non-Abelian examples with finite symmetry: [Kaidi, Ohmori, Zheng 21]
- $\mathcal{N} = 1 \ PSU(N)$ SYM: \mathbb{Z}_N non-invertible chiral symmetry (R-symmetry)

★ Self-duality symmetries

E.g.: 2d Ising model has \mathbb{Z}_2 symmetry (spin flip)
and Kramers–Wannier symmetry (self-duality under \mathbb{Z}_2 gauging)Symmetry elements: $1, \eta, N$ [Tambara, Yamagami 98]

 ${\rm s.t.} \qquad \eta\times\eta=\mathbb{1}\;, \qquad \eta\times\mathcal{N}=\mathcal{N}\times\eta=\mathcal{N}\;, \qquad \mathcal{N}\times\mathcal{N}=\mathbb{1}\oplus\mathcal{N}$

Tambara-Yamagami symmetry

★ Self-duality symmetries

E.g.: 2d Ising model has \mathbb{Z}_2 symmetry (spin flip) and Kramers–Wannier symmetry (self-duality under \mathbb{Z}_2 gauging) Symmetry elements: $1, \eta, N$ [Tambara, Yamagami 98]

 $\text{s.t.} \qquad \eta \times \eta = \mathbbm{1} \ , \qquad \eta \times \mathcal{N} = \mathcal{N} \times \eta = \mathcal{N} \ , \qquad \mathcal{N} \times \mathcal{N} = \mathbbm{1} \oplus \mathcal{N}$

Tambara-Yamagami symmetry

· Similar structure in some 4d gauge theories with a conformal manifold

 $\begin{array}{ll} \textit{E.g.:} \quad \mathcal{N}=4 \ \mathfrak{su}(N) \ \text{SYM} & \text{has} \ SL(2,\mathbb{Z}) \ \text{duality,} \quad S:\tau \to -\frac{1}{\tau} \\ \text{At} \ \tau=i \ \text{is almost self dual, but} \ SU(N) \ \leftrightarrow \ PSU(N) \\ \text{Combine with topological gauging of} \ \mathbb{Z}_N \ 1\text{-form symmetry} \end{array}$

Non-invertible 0-form self-duality symmetry:

$$U_{S} \times \overline{U}_{S} = C[\mathbb{Z}_{N}]$$

$$U_{S} \times U_{S} = C[\mathbb{Z}_{N}] \times U_{C}$$

$$SU(N)$$

$$\tau = i$$

$$U_{S}$$

$$U_{S}$$

[Kaidi, Ohmori, Zheng 21; Choi, Cordova, Hsin, Lam, Shao 21 & 22]

★ Non-Invertible Symmetries and String Theory

For QFTs with a realization in string theory, geometric tools might be used to identify the non-invertible symmetry or uncover underlying general structures (*e.g.* SymTFT)

- Holography
- Geometry engineering

Symmetry TFT from Holography

• Relevance of topological sectors in holography was noticed long ago: [Witten 98]

 $\operatorname{AdS/CFT}$: 4d $\mathfrak{su}(N) \mathcal{N} = 4$ SYM \longleftrightarrow IIB string theory on $\operatorname{AdS}_5 \times S^5$

SUGRA: at low momenta, drop kinetic terms and be left with a topological theory: [Aharony, Witten 98; Witten 98; Belov, Moore 04; Kravec, McGreevy, Swingle 14]

$$\int_{X_{10}} B_2 \wedge F_3 \wedge F_5 \qquad \xrightarrow{S^5} \qquad \frac{N}{2\pi} \int_{\mathsf{AdS}_5} B_2 \wedge dC_2$$

Chern-Simons-like TQFT, equivalent to 5d 2-form \mathbb{Z}_N gauge theory

Top. sector is SymTFT for \mathbb{Z}_N 1-form symmetry

Symmetry TFT from Holography

Relevance of topological sectors in holography was noticed long ago: [Witten 98]

AdS/CFT: 4d $\mathfrak{su}(N) \mathcal{N} = 4$ SYM \longleftrightarrow IIB string theory on AdS₅ $\times S^5$

SUGRA: at low momenta, drop kinetic terms and be left with a topological theory: [Aharony, Witten 98; Witten 98; Belov, Moore 04; Kravec, McGreevy, Swingle 14]

$$\int_{X_{10}} B_2 \wedge F_3 \wedge F_5 \qquad \xrightarrow{S^5} \qquad \frac{N}{2\pi} \int_{\mathsf{AdS}_5} B_2 \wedge dC_2$$

Chern-Simons-like TQFT, equivalent to 5d 2-form \mathbb{Z}_N gauge theory

Top. sector is SymTFT for \mathbb{Z}_N 1-form symmetry

- Global variants are described by boundary conditions for the topological sector: electric top. b.c. $B_2|_{\partial AdS_5} = 0$ SU(N)magnetic top. b.c. $C_2|_{\partial AdS_5} = 0$ $PSU(N)_0 \cong [SU(N)/\mathbb{Z}_N]_0$
- SymTFT determined from string theory [Apruzzi, Bah, Bonetti, Schafer-Nameki 22]
 [Apruzzi, Bonetti, Garcia Etxebarria, Hosseini, Schafer-Nameki 21]

★ Non-invertible self-duality symmetry of $\mathcal{N} = 4$ SYM

In IIB String Theory, $SL(2,\mathbb{Z})$ is a gauge symmetry spontaneously broken by axio-dilaton VEV $\tau = C_0 + i e^{-\phi} \rightarrow \frac{a\tau + b}{c\tau + d}$

• At $\tau = i$, unbroken \mathbb{Z}_4 gauge symmetry $\subset SL(2,\mathbb{Z})$ generated by S

 $\Rightarrow \quad \mathsf{SymTFT} \text{ is 5d 2-form } \mathbb{Z}_N \text{ gauge theory with } S: \begin{pmatrix} B_2 \\ C_2 \end{pmatrix} \rightarrow \begin{pmatrix} -C_2 \\ B_2 \end{pmatrix} \text{ gauged}$

[Antinucci, FB, Copetti, Galati, Rizi 22; Kaidi, Ohmori, Zheng 22]

★ Non-invertible self-duality symmetry of $\mathcal{N} = 4$ SYM

In IIB String Theory, $SL(2,\mathbb{Z})$ is a gauge symmetry spontaneously broken by axio-dilaton VEV $\tau = C_0 + i e^{-\phi} \rightarrow \frac{a\tau + b}{c\tau + d}$

• At $\tau = i$, unbroken \mathbb{Z}_4 gauge symmetry $\subset SL(2,\mathbb{Z})$ generated by S

 $\Rightarrow \text{ SymTFT is 5d 2-form } \mathbb{Z}_N \text{ gauge theory with } S: \begin{pmatrix} B_2 \\ C_2 \end{pmatrix} \rightarrow \begin{pmatrix} -C_2 \\ B_2 \end{pmatrix} \text{ gauged}$ [Antinucci, FB, Copetti, Galati, Rizi 22; Kaidi, Ohmori, Zheng 22]

★ In holography, symmetry defect become dynamical objects (swapland) *E.g.* for U(1): defect = background field = b.c. for dynamical A_{μ} in the bulk In other cases, defects \leftrightarrow branes in the bulk [Apruzzi, Bah, Bonetti, Schafer-Nameki 22] [Garcia Etxebarria 22; Heckman, Hübner, Torres, Zhang 22] Topological only within IR topological sector, or equivalently at infinity [*cfr.* Heckman, Hübner, Murdia 24]

Many other cases discussed *e.g.* in [van Beest, Gould, Schafer-Nameki, Wang 22; Bashmakov, Del Zotto, Hasan, Kaidi 22; Antinucci, Copetti, Galati, Rizi 22; Heckman, Hübner, Torres, Yu, Zhang 22]

★ Similar constructions in geometric engineering

[Del Zotto, Heckman, Park, Rudelius 15] [Heckman, Hübner, Torres, Zhang 22]

String theory / M-theory on $\mathbb{R}^{d-1,1} \times X$

BPS *m*-dimensional operators from *p*-branes on "unscreen defect group":

$$\mathbb{D} = \bigoplus_{m} \mathbb{D}^{(m)} \qquad \qquad \mathbb{D}^{(m)} = \bigoplus_{p-k=m-1} \frac{H_k(X, \partial X)}{H_k(X)}$$

• Topological operators from dual q-branes on ∂X at infinity

Anomalies

For invertible symmetries, 't Hooft anomalies are additive and described by cohomology classes (group cohomology or more generally cobordism). Not additive in general.

Anomalies

For invertible symmetries, 't Hooft anomalies are additive and described by cohomology classes (group cohomology or more generally cobordism). <u>Not additive</u> in general.

- ★ Symmetry is non-anomalous if:
 - can be gauged
 - exists a trivially gapped (SPT) phase supporting it
 - exists a fiber functor $F: \mathcal{C} \to \mathsf{Vec}_{\mathbb{C}}$

(or \exists a module category with 1 simple object)

[Thorngren, Wang 19]

Anomalies

For invertible symmetries, 't Hooft anomalies are additive and described by cohomology classes (group cohomology or more generally cobordism). <u>Not additive</u> in general.

- ★ Symmetry is non-anomalous if:
 - can be gauged
 - exists a trivially gapped (SPT) phase supporting it
 - exists a fiber functor $F: \mathcal{C} \to \mathsf{Vec}_{\mathbb{C}}$ [Thorngren, Wang 19]
 - (or \exists a module category with 1 simple object)

2d: complicated algebraic conditions. Simplify for Tambara–Yamagami type. In higher dimensions, not well understood.

* In 4d, when SymTFT is gauging of DW theory (as for self-duality of $\mathcal{N} = 4$ SYM): Symmetry non-anomalous if \exists duality-invariant Lagrangian algebra of DW theory *E.g.*: N = 2, 5, 8, 10, ... for $\mathfrak{su}(N)$ $\mathcal{N} = 4$ SYM [Antinucci, FB, Copetti, Galati, Rizi 23]

[Cordova, Hsin, Zhang 23; Sun, Zheng 23]

★ E.g.: 2d tricritical Ising model ($c = \frac{7}{10}$ minimal model)

Relevant deformation by $\alpha O_{\Delta=6/5}$ that preserves Tambara-Yamagami symmetry:

 $\alpha > 0$: flow to c = 1/2 lsing

 $\alpha < 0$: spontaneous breaking of TY symmetry [Chang, Lin, Shao, Wang, Yin 18] \sim 3 degenerate gapped vacua with different physical properties [Huse 84] ★ E.g.: 4d SU(2) $\mathcal{N} = 4$ SYM, deformed by $W = m^2 \sum \Phi_i^2$ ($\mathcal{N} = 1^*$ theory)

At $\tau = i$: non-invertible self-duality symmetry, spontaneously broken [Aguilara-Damia, Argurio, FB, Benvenuti, Copetti, Tizzano 23]

3 gapped vacua: 1 Higgsed and 2 confined

 $\begin{array}{ll} H: & D_{(1,0)} = \mbox{Wilson condenses} \\ C^{(0)}: & D_{(0,1)} = \mbox{non-genuine 't Hooft cond.} \\ C^{(1)}: & D_{(1,1)} = \mbox{non-genuine dyon cond.} \end{array}$

 \mathbb{Z}_2 gauge theory (TQFT) SPT₀ SPT₁ At $\tau = i$: non-invertible self-duality symmetry, spontaneously broken [Aguilara-Damia, Argurio, FB, Benvenuti, Copetti, Tizzano 23]

3 gapped vacua: 1 Higgsed and 2 confined

- $\begin{array}{ll} H: & D_{(1,0)} = \text{Wilson condenses} & \mathbb{Z}_2 \text{ gauge theory (TQFT)} \\ C^{(0)}: & D_{(0,1)} = \text{non-genuine 't Hooft cond.} & \text{SPT}_0 \\ C^{(1)}: & D_{(1,1)} = \text{non-genuine dyon cond.} & \text{SPT}_1 \end{array}$
- S duality: $H \stackrel{S}{\longleftrightarrow} C^{(0)}$ while $C^{(1)}$ is a singlet [Dorey 99]

 $\label{eq:order parameter of the constraint} \text{Order parameter } \mathcal{O} = \operatorname{Tr} \Phi_i^2 \text{:} \qquad \langle \mathcal{O} \rangle_H = - \langle \mathcal{O} \rangle_{C^{(0)}} \qquad \langle \mathcal{O} \rangle_{C^{(1)}} = 0$

* Spontaneous symmetry breaking of (discrete) non-invertible symmetry \rightarrow degenerate vacua with inequivalent physical properties

Non-invertible symmetry relates untwisted and twisted sectors:

★ Patterns of discrete non-invertible symmetry breaking in 2d are classified by topological boundary conditions of the SymTFT

[Bhardwaj, Bottini, Pajer, Schafer-Nameki 23]

 Patterns of discrete non-invertible symmetry breaking in 2d are classified by topological boundary conditions of the SymTFT

[Bhardwaj, Bottini, Pajer, Schafer-Nameki 23]

E.g.: the SymTFT of TY admits a unique top. b.c. that leads to 3 vacua

• Higher dimensions are more complicated

[Bhardwaj, Pajer, Schafer-Nameki, Tiwari, Warman, Wu 24]

Examples and Applications

Physics of 4d Yang–Mills theory at $\theta = \pi$

[Gaiotto, Kapustin, Komargodski, Seiberg 17]

4d SU(N) gauge theory depends on theta angle θ

$$S \supset \frac{i\,\theta}{8\pi^2} \int \operatorname{Tr} F \wedge F$$

• 1-form (center) symmetry \mathbb{Z}_N At $\theta = 0, \pi : CP$ symmetry (equivalently, time reversal) $\theta \to -\theta$

The angle θ is 2π periodic up to a counterterm:

$$\theta \to \theta + 2\pi \qquad \Rightarrow \qquad \Delta S = \frac{2\pi i (N-1)}{2N} \int \underbrace{\mathcal{P}(\mathfrak{b})}_{\simeq \mathfrak{b} \cup \mathfrak{b}} \qquad \mathfrak{b}: \mathbb{Z}_N \text{ cocycle}$$

Physics of 4d Yang–Mills theory at $\theta = \pi$

[Gaiotto, Kapustin, Komargodski, Seiberg 17]

4d SU(N) gauge theory depends on theta angle θ

$$S \supset \frac{i\,\theta}{8\pi^2} \int \operatorname{Tr} F \wedge F$$

• 1-form (center) symmetry \mathbb{Z}_N At $\theta = 0, \pi : CP$ symmetry (equivalently, time reversal) $\theta \to -\theta$

The angle θ is 2π periodic up to a counterterm:

$$\theta \to \theta + 2\pi \qquad \Rightarrow \qquad \Delta S = \frac{2\pi i \left(N - 1\right)}{2N} \int \underbrace{\mathcal{P}(\mathfrak{b})}_{\simeq \mathfrak{b} \cup \mathfrak{b}} \qquad \mathfrak{b}: \mathbb{Z}_N \text{ cocycle}$$

Slightly different physics at N even/odd. With regularization preserving CP at $\theta = 0$, at $\theta = \pi$ there is a mixed 't Hooft anomaly between \mathbb{Z}_N and CP.

* Assuming confinement for all values of θ , *CP* spontaneously broken at $\theta = \pi$. (Other less probably scenarios are possible: TQFT, or massless)

Two-dimensional adjoint QCD [Komargodski, Ohmori, Roumpedakis, Seifnashri 20]

2d SU(N) QCD with one massless adjoint Majorana fermion. Does it confine?

★ Bosonization: n Majorana fermsions \simeq Spin $(n)_1$ WZW

Symmetries of QCD same as of $\text{Spin}(N^2 - 1)_1/SU(N)_N$ coset model = lines of $\text{Spin}(N^2 - 1)_1$ under which the SU(N) currents j_{μ}^a are neutral

Two-dimensional adjoint QCD [Komargodski, Ohmori, Roumpedakis, Seifnashri 20]

2d SU(N) QCD with one massless adjoint Majorana fermion. Does it confine?

★ Bosonization: n Majorana fermsions \simeq Spin $(n)_1$ WZW

Symmetries of QCD same as of $\text{Spin}(N^2 - 1)_1/SU(N)_N$ coset model = lines of $\text{Spin}(N^2 - 1)_1$ under which the SU(N) currents j^a_μ are neutral

• $\sim 2^{2N}$ non-invertible lines, charged under \mathbb{Z}_N 1-form symmetry Lines charged under $\mathbb{Z}_N^{[1]}$ create strings, ground states of Wilson lines, degenerate with vacuum

Fundamental Wilson line has perimeter low \Rightarrow deconfinement

• Assuming IR: Spin $(n)_1/SU(N)_N$ TQFT $\Rightarrow \sim 2^N$ vacua

Two-dimensional adjoint QCD [Komargodski, Ohmori, Roumpedakis, Seifnashri 20]

2d SU(N) QCD with one massless adjoint Majorana fermion. Does it confine?

★ Bosonization: n Majorana fermsions \simeq Spin $(n)_1$ WZW

Symmetries of QCD same as of $\text{Spin}(N^2 - 1)_1/SU(N)_N$ coset model = lines of $\text{Spin}(N^2 - 1)_1$ under which the SU(N) currents j^a_μ are neutral

• $\sim 2^{2N}$ non-invertible lines, charged under \mathbb{Z}_N 1-form symmetry Lines charged under $\mathbb{Z}_N^{[1]}$ create strings, ground states of Wilson lines, degenerate with vacuum

Fundamental Wilson line has perimeter low \Rightarrow deconfinement

- Assuming IR: Spin $(n)_1/SU(N)_N$ TQFT $\Rightarrow \sim 2^N$ vacua
- Generalized naturalness

$$\mathcal{O} = \operatorname{Tr}(\psi_+\psi_-)\operatorname{Tr}(\psi_+\psi_-)$$

Invariant under ordinary symmetries, but breaks some non-invertible symmetries

 $\Rightarrow~$ not generated along RG flow

[cfr. Gorbenko, Zan 20; Jacobsen, Saleur 23]

2d Modular Bootstrap

[Lin, Shao 23]

Conformal bootstrap determines rigorous bounds on unitary CFTs [Rattazzi, Rychkov, Vichi, Tonni 08]

2d CFTs: modular bootstrap exploits modular invariance on T^2

$$\mathcal{H}_{a} = \bigoplus_{\mu} W_{a}^{\mu} \times \mathcal{V}_{\mu}$$
$$Z_{\mu}^{\mathsf{3d}}(-1/\tau) = \sum_{\nu \in \mathsf{SymTFT}} S_{\mu\nu} Z_{\nu}^{\mathsf{3d}}(\tau)$$

л

и

Expansion in Virasoro characters: $Z^{3d}_{\mu} = \sum_{(h,\bar{h})\in\mathcal{H}_{\mu}} n_{\mu;h,\bar{h}} \chi_{h}(\tau) \chi_{\bar{h}}(\bar{\tau})$ Positive-definite functionals on ranges of spectra rule them out.

2d Modular Bootstrap

Conformal bootstrap determines rigorous bounds on unitary CFTs [Rattazzi, Rychkov, Vichi, Tonni 08]

2d CFTs: modular bootstrap exploits modular invariance on T^2

$$\mathcal{H}_{a} = \bigoplus_{\mu} W_{a}^{\mu} \times \mathcal{V}_{\mu}$$
$$Z_{\mu}^{3d}(-1/\tau) = \sum_{\nu \in \text{SymTFT}} S_{\mu\nu} Z_{\nu}^{3d}(\tau)$$

Expansion in Virasoro characters: $Z^{3d}_{\mu} = \sum_{(h,\bar{h})\in\mathcal{H}_{\mu}} n_{\mu;h,\bar{h}} \chi_{h}(\tau) \chi_{\bar{h}}(\bar{\tau})$ Positive-definite functionals on ranges of spectra rule them out.

- *E.g.*: upper bounds on dimension of lightest symmetry-preserving scalar for Ising (TY) symmetry.
- $\Delta < 2 \Rightarrow$ no stable CFT

For 1 < c < 6.7: no stable Ising-preserving CFT

a

Λ

S-Matrix Modified Crossing Simmetry in 2d

 $S\mbox{-matrices}$ of 2d massive solitons are found to satisfy modified crossing relations.

If solitons are related by spontaneously broken non-invertible symmetry, modified crossing relations can be computed: [Copetti, Cordova, Komatsu 24]

$$S^{ab}_{cd}(\theta) = \sqrt{\frac{d_a d_c}{d_b d_d}} \; S^{bc}_{ad}(i\pi - \theta) \label{eq:scalar}$$

S-Matrix Modified Crossing Simmetry in 2d

 $S\mbox{-matrices}$ of 2d massive solitons are found to satisfy modified crossing relations.

If solitons are related by spontaneously broken non-invertible symmetry, modified crossing relations can be computed: [Copetti, Cordova, Komatsu 24]

$$S^{ab}_{cd}(\theta) = \sqrt{\frac{d_a d_c}{d_b d_d}} S^{bc}_{ad}(i\pi - \theta)$$

★ Tested in tricritical Ising with massive deformation to 3 vacua.
Integrability + Unitarity + Yang-Baxter + Crossing fix the exact S-matrix:

$$S^{ab}_{cd}(\theta) = Z(\theta) \left[\sqrt{\frac{d_a d_c}{d_b d_d}} \sinh\left(\frac{\theta}{4}\right) \delta_{bd} + \sinh\left(\frac{i\pi - \theta}{4}\right) \delta_{ac} \right]$$

* Modified crossing might play a role in 3d Chern–Simons-matter theories and in 4d scattering on monopoles [Mehta, Minwalla, Patel, Prakash, Sharma 22; Csaki, Hong, Shirman, Telem, Terning, Waterbury 20; van Beest, Boyle Smith, Delmastro, Komargodski, Tong 23]

Density of states and entanglement in 2d

* Cardy's formula determines the density of states in CFTs at high temperatures. With invertible finite symmetry G, density of states in a given rep μ :

$$\operatorname{Tr}_{\mathcal{H}^{\mu}} e^{-\beta H} \simeq \frac{(\dim \mu)^2}{|G|} e^{\pi c/6\beta} \quad \text{for} \quad \beta \ll 1$$

Generalizes to fusion categories of 2d non-invertible symmetries:

[Lin, Okada, Seifnashri, Tachikawa 22]

$$\operatorname{Tr}_{\mathcal{H}_a^{\mu}} e^{-\beta H} \simeq (\dim W_a^{\mu}) S_{\mu 1} e^{\pi c/6\beta}$$

Density of states and entanglement in 2d

* Cardy's formula determines the density of states in CFTs at high temperatures. With invertible finite symmetry G, density of states in a given rep μ :

$$\operatorname{Tr}_{\mathcal{H}^{\mu}} e^{-\beta H} \simeq \frac{(\dim \mu)^2}{|G|} e^{\pi c/6\beta} \quad \text{for} \quad \beta \ll 1$$

Generalizes to fusion categories of 2d non-invertible symmetries:

 $\operatorname{Tr}_{\mathcal{H}_{a}^{\mu}} e^{-\beta H} \simeq (\dim W_{a}^{\mu}) S_{\mu 1} e^{\pi c/6\beta}$

[Lin, Okada, Seifnashri, Tachikawa 22]

 Inclusion of boundaries yields symmetry-resolved entanglement entropy: [Choi, Rayhaun, Zheng 24; Heymann, Quella 24; Das, Molina-Vilaplana, Saura-Bastida 24]

$$S_{\mathsf{EE}}^{\rho} \simeq \frac{c}{3} \log \frac{L}{\epsilon} + \log g_1 + \log g_2 + \log \frac{d_{\rho} N_{\rho \underline{B}_2}^{\underline{B}_1}}{d_{\underline{B}_1} d_{\underline{B}_2}}$$

 $- \underbrace{\underline{B}_1}_{--} \underbrace{\underline{B}_2}_{---}$

Here $g_i = \langle B_i | 0
angle$ are [Affleck, Ludwig 91] central charges

SymTFT: interfaces ρ between top. b.c.'s provide representations

Outlook

Non-invertible symmetries provide new rich rigid structures in QFTs and powerful constraints on their RG flows. Potential impacts of symmetries in all sort of fields.

- Mathematical structure is rather intricate: higher fusion categories
 Collaborative effort (high energy physics, condensed matter, mathematics) to develop the language
- Most new results to date are in 2d
 Development of higher categories allows us to go up in d
- Phenomenological applications are still limited Progess in 4d might lead to more applications