Brane solutions in non-supersymmetric strings

Salvatore Raucci

Scuola Normale Superiore

TFI 2024: Theories of the Fundamental Interactions

Based on works with J. Mourad and A. Sagnotti

Plan

\Box Motivations

- Non-susy tachyon-free string theories in 10D
- Tadpole potentials
- \Box Brane solutions in non-susy strings
	- Isometry-driven
	- Vacuum-driven

\Box Discussion

Motivations

String theory contains extended objects: **branes**.

Non-perturbative (D branes $\mathcal{T} \sim g_s^{-1}$) but still captured by low-energy EFT:

$$
\frac{1}{2\kappa_{10}^2} \sim \frac{1}{G_N} \sim g_s^{-2} \,,
$$

and the gravitational field generated by a D brane scales as

 $G_N \mathcal{T} \sim q_s$.

Brane solution: background with $ISO(1, p) \times SO(9 - p)$ isometries, interpolating

singularity \longrightarrow flat space.

BPS branes in spacetime supersymmetric strings: $(S \supset e^{-2\beta_p \phi} F_{p+2}^2)$

$$
ds^{2} = \Delta^{-\frac{7-p}{8}} dx_{p+1}^{2} + \Delta^{\frac{p+1}{8}} (d\rho^{2} + \rho^{2} d\Omega_{8-p}^{2}),
$$

\n
$$
e^{\phi} = e^{\phi_{0}} \Delta^{-\beta_{p}}, \quad F_{p+2} = \pm (7-p)|h_{p}|e^{\beta_{p}\phi_{0}} \Delta^{-2} \rho^{p-8} dx^{0} \wedge \ldots \wedge d\rho.
$$

with $\Delta = 1 + h_p \rho^{p-7}$.

Are there similar solutions in **non-supersymmetric setups**?

I focus on specific non-susy models, but the general considerations have wider applicability in (perturbative) string-derived scenarios.

Non-susy tachyon-free string theories in 10D

- **1** Heterotic: $SO(16) \times SO(16)$ [Alvarez-Gaume, Ginsparg, Moore, Vafa 1986; Dixon, Harvey 1986].
- ② Orientifold of bosonic 0B: 0'B [Sagnotti 1995].
- **3** Type IIB with $O9^+$ and 32 $\overline{O9}$: USp(32) [Sugimoto 1999].

Tadpole potentials

These models are **divergent**!

e.g. \mathcal{Z}_1 for the orientifolds and \mathcal{Z}_2 for the heterotic.

➠ **IR divergences** (tadpoles)

➠ Subtract tadpole contribution through background shift [Fischler, Susskind 1986; Callan, Lovelace, Nappi, Yost 1986–8; Tseytlin 1988–90].

∼ string-loop *correction*

$$
S \sim \int (e^{-2\phi} + c_R)R + (e^{-2\phi} + c_{\phi})4(\partial \phi)^2 - (e^{-2\phi} + c_H)\frac{1}{2}\frac{H^2}{3!} - \Lambda + \dots
$$

tadpole scalar potential $|\Lambda = T e^{\gamma \phi}, |\qquad \gamma = \{0, -1\} \Rightarrow$ **runaway**.

Brane solutions in non-susy strings

Worldsheet [Dudas, Mourad, Sagnotti 2001]: charged branes for all form fields

- ω SO(16) \times SO(16): NS1 and NS5.
- ② 0'B: D1, D3 and D5.
- ③ USp(32): D1 and D5.
- $+$ uncharged (generically unstable), K -charged, topologically charged, ...

What are the *gravity solutions* of these branes?

(previous related works [Antonelli, Basile 2019, Basile 2021-2])

Isometry-driven

Keep $ISO(1, p) \times SO(9 - p)$ **isometries** (*branes and vacua*): [Mourad, SR, Sagnotti 2024]

 $ds^2 = e^{2A(r)} dx_{p,1}^2 + e^{2B(r)} dr^2 + e^{2C(r)} d\Omega_{8-p}^2$, $\phi = \phi(r)$, $F_{p+2} = F_{p+2}(r)$.

In the harmonic gauge $B = (p + 1)A + (8 - p)C$,

$$
\begin{pmatrix} X \\ Y \\ W \end{pmatrix}'' = \begin{pmatrix} + & 0 & - \\ 0 & + & \pm, 0 \\ + & \pm, 0 & +, 0 \end{pmatrix} \begin{pmatrix} e^X \\ e^Y \\ e^W \end{pmatrix},
$$

X ∼ curvature , *Y* ∼ flux , *W* ∼ tadpole .

- ➠ Curvature and tadpole: vacuum solutions and uncharged branes
	- Classification of **asymptotics**.
	- Global convexity and conserved quantity \rightarrow partial matching of asymptotics.

Spacetime always closes on a *finite-distance singularity* [Antonelli, Basile 2019].

 $A(r)$ (blue, dot-dashed), $B(r)$ (red, solid), $C(r)$ (green, dashed), $\phi(r)$ (black, dotted), and $e^C(\xi)$

- ➠ Curvature, tadpole and flux: flux vacua and charged branes
	- Classification of **asymptotics**.
	- D5 orientifold: flux decouples \rightarrow previous case.

- Only heterotic one-loop tadpoles generate tadpole-dominated collapses.

In all cases, *finite-distance singularity*.

Vacuum-driven

Keep **singularity** −→ **vacuum** [Mourad, SR, Sagnotti 2024]: Dudas-Mourad

$$
ds^{2} = e^{2\Omega(z)} \left(dx_{8,1}^{2} + dz^{2} \right) , \quad \phi = \phi(z) .
$$
 [Dudas, Mourad 2000]

- Finite-length *z*-interval with *singular* endpoints.
- Perturbatively stable [Basile, Mourad, Sagnotti 2018] \rightarrow can be a vacuum.

Branes in this vacuum:

$$
ds^{2} = e^{2A(z,r)} dx_{p,1}^{2} + e^{2B(z,r)} (dr^{2} + r^{2} d\Omega_{7-p}^{2}) + e^{2D(z,r)} dz^{2},
$$

$$
\phi = \phi(z,r), \qquad F_{p+2} = F_{p+2}(z,r).
$$

☞ $dx_{8,1}^2$ \rightarrow Ricci-flat: exact solution with 9D uncharged branes (smeared)

$$
ds^2 = e^{2\Omega(z)}\left(dx_\text{9D uncharged brane}^2 + dz^2\right)\ ,\quad \ \phi = \phi(z)\ ,\quad \ F_{p+2} = 0\ .
$$

- \bullet Linearized solutions: compatible with singular boundary conditions as in [Mourad, Sagnotti 2023], matches the *expected charged branes*.
	- D3 (type 0'B) *z*-independent [Basile, SR, Thomée 2022].
	- All other cases have *z* dependence, e.g. orientifold D5

$$
F_7 = \frac{Q_5}{r} \left[-\frac{1}{r} \int_0^z d\zeta e^{4\Omega(\zeta) + \phi(\zeta)} dr + e^{4\Omega(z) + \phi(z)} dz \right] \wedge dx^0 \wedge \ldots \wedge dx^5.
$$

- Linear modes are perturbations, with care as $r \to \infty$ and $z \to$ endpoints.

Discussion

➫ Brane solutions are *heavily deformed* in non-susy strings. We found

- ISO(1*, p*)×SO(9 − *p*) isometries and finite-distance singularities.
- linearized branes in Dudas-Mourad vacua.

➫ How can we *identify* the branes of non-supersymmetric strings?

- \Rightarrow The two approaches may be compatible:
	- $-$ ISO(1, p)×SO(9 p) close to the branes.
	- linearized solutions far from them.

also depeding on the hierarchy of lengths

 $\ell_{\text{DM}} \leftrightarrow \ell_{\text{horizon}}$.

 \Rightarrow The second approach is a special case of *branes in backgrounds*. Interesting option: branes in cosmological Dudas-Mourad

$$
ds^{2} = -e^{2D(t,r)}dt^{2} + e^{2A(t,r)}dx_{p}^{2} + e^{2B(t,r)}\left(dr^{2} + r^{2}d\Omega_{8-p}^{2}\right).
$$

Our analysis gives Euclidean branes: more work is needed.

- ➫ Ubiquitous presence of spacetime *singularities*: no control on which ones are cured in UV string theory.
- Understanding branes in non-susy strings demands control on singularities.

Thank you!