Locality & Operator Algebras in Quantum Gravity

Alex Belin

24/09/24 @ TFI 24

 \bigcirc

$$A \qquad B$$

$$|\Psi'\rangle = e^{iO(x)}|\Psi\rangle \qquad x \in A$$

$$|W'\rangle = e^{iO(x)}|\Psi\rangle \qquad x \in A$$

$$C_{an} \quad we \quad tell \quad |\Psi\rangle \quad and \quad |\Psi'\rangle \quad apart \quad from \quad B \stackrel{?}{=} \\ (\Psi'| = O_1(x)) \qquad O_n(x)|\Psi'\rangle \qquad e^{iO(x)}|\Psi\rangle = \langle \Psi| e^{iO(x)} = O_n(x)|\Psi'\rangle \qquad (J_n) = iO(x) \quad [\Psi\rangle = \langle \Psi| e^{iO(x)} = O_n(x)|\Psi\rangle \qquad (J_n) = iO(x)|\Psi\rangle$$

$$= \langle \Psi| = O_1(x) \qquad O_n(x)|\Psi\rangle \qquad (J_n) = iO(x)|\Psi\rangle$$

$$= \langle \Psi| = O_1(x) \qquad O_n(x)|\Psi\rangle \qquad (J_n) = iO(x)|\Psi\rangle$$

$$S_{EE}(A) = -Tr - S_A \log S_A = \infty$$

The Reeh-Schlieder Theorem
Consider H:
$$\phi_{f_1} = \int d^d x \ f_i(x) \ \phi(x)$$

The idea of using Von Neumann
algebras is to touch on these issues.
Mathematically precise statements can
be made in the strict
$$G_N \rightarrow O$$
 limit.
We better recover OFT in the limit
 $G_N \rightarrow O$.
There are different ways to take this limit,
and we would like to control the breaking for $G_N \neq O$.

 $\overline{10}$

$$T_{SPE} = I$$

$$H = H_{1} \otimes H_{2} \qquad A = B(H_{1})$$

$$= T_{SPE} = I \quad \text{factor} \quad \text{centor of } A \ll 11$$

$$I = I \quad \text{if } \dim H_{1} = d < \infty$$

$$I = I \quad \text{if } \dim H_{1} = \infty$$

$$= D = I + r \quad \text{, which } \max \text{ not } be \quad \text{defined on all} \text{ of } A \quad \text{for } I = \infty$$

$$(1)$$

Consider
$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|\Omega\rangle + |U\rangle)$$

$$|\Psi\rangle = |\Psi\rangle \otimes \dots \otimes |\Psi\rangle$$

 $n \text{ times }, n \rightarrow \infty$

$$\mathcal{H}$$
 := All but finitely many of the qubit pairs are in MP).
 \mathcal{A} := All operators acting on finitely many qubits

The Hilbert Space does not factorize

$$\begin{aligned}
H &= \text{Hop a Hboton} \\
B &= \text{Hop a Hboton} \\
B &= \text{There is a trace!} \\
&= \text{tr a := < (F | a | F) finite } \\
&= \text{tr (a'a)>o} \\
&= \text{tr (ab) = tr (ba)} \\
So states in fl all have infinite entanglement entrops.} \\
B &= \text{Hop are looking at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.} \\
&= \text{Hop at clates with a finite difference.}$$

This was really a
$$II$$
, V.N. algebra.
 $J II \infty$ V.N. algebra
 $II, \otimes B(Hn)$
 $+r(1) = \infty$

Type III
This is what happens in QFT.
Replace 147
$$\rightarrow$$
 107 only partially entangled
 $107 = \sqrt{2} |117 + \sqrt{1-2} |117$
 $\frac{1}{2} < 2 < 1$
Also here $H \neq H = 0$ Hop of Hollow,

Type III
This is what happens in QFT.
Replace M4>
$$-0$$
 10> only partially entangled
 $10>= \sqrt{2} |11> + \sqrt{1-2} |11>$
 $\frac{1}{2} < 2 < 0$
type II type I
Also here $fl \neq fl top \circ fl bettom$,
Red, no trace

Where do these algebras appear?
Type
$$I \infty \Rightarrow N = 4$$
 SYM at finite N
Put the theory on S^{3}
 $\Rightarrow D QM$ with dim $H = \infty$

If you consider a subsystem of S'=D III

(7)

$$|TFD\rangle = \sum_{n}^{-BEn/2} |n\rangle_{L} \otimes |n\rangle_{R}$$

is a type III, V.N. algebra.

[Leutheusser, Liu]

 $S_{BH} = \frac{A}{4G_N} + S_{out}$

What about 1/N or GN corrections?
With first order corrections: [Witten]
III, III I Too
-> Careful treatment of the Hamiltonian
mode
$$U = \frac{1}{N} (H_L - \langle H_L \rangle)$$

(20)

$$\Delta S EE = \Delta A + \Delta Sout$$

These differences are captured by
the type I a algebra

$$\hat{H} = H + Hehs = H + q$$
 920
 $A = \begin{cases} e^{ipH}a e^{-ipH}, q \end{cases}$ $p = -i \frac{d}{d}$
Simplest toy-model for an observer, 1 d.of.
CLPW showed that the algebra is I,
CLPW showed that the algebra is I,
Gives an algebraic interpretation to the
 dS Entropy (or really differences between states)

• e----

3 Stringy effects

The previous picture was valid as
$$N \rightarrow \infty$$
,
and also at large λ .
What happens at finite λ (still large N)?

3 Stringy effects

The previous picture was valid as N-+ 00,
and also at large
$$\lambda$$
.
What happens at finite λ (still large N)?
Many properties still hold:
Deconfinement transition at some THP
. Deconfinement transition at some THP
. We expect a continuous spectral densit.
in (O(+) O(0))? ($\forall \lambda \neq 0$)
. Algebra satisfies large N factorization

T is extractable from
$$\angle O(F) O(O) >_{B}$$
,
i.e. from its spectral density $J(w)$.
At any $1 \neq 0$, we expect $S(w)$ to have
continuous support.
Genteen, Ling studied various prototopes of $S(w)$,
and their implications for C .

But the spectral density of a fixed set
of operators cannot be the whole story.
In d=2, in the DIDS CFT,
$$\lambda = 0$$
 is
the symmetric orbifold point.
 $\mathcal{C} = (T^4)^{\otimes N}$
 $\mathcal{C} = (T^4)^{\otimes N}$
One can show:
 $\langle O(t) O(0) \rangle_{\mathcal{B}} = \langle O(t) O(0) \rangle_{\mathcal{B}TZ} + O(1/N)$
 $\forall O$
(AB, Birtonja, Castro, Knop]

$$S_{S.T.}(\Delta) \sim e$$
 [Keller]

$$S_{EE}^{1-10-p} = \text{finite}$$

 $S_{EE}^{1-10-p} = \text{finite}$
 $algebra is type I
algebra is type I
already at finite I,
(30) infinite N.$

4 Localizing Information in Q.G.
We already discussed that non-perturbatively
(i.e. finite N), Q.G. localizes information
deastically differently
Does this breakdown of locality occur
only via non-perturbative (i.e.
$$e^{-N^2}$$
) effects?

Or does locality break down in GN-pert. thy?

[Chowdury, Godet, Papadoulaki, Raju]

Setup

a CFT state 147: Consider strong backreaction <YIHIY>~N2 (YIAH214)~N2 -> classical time-dependence explosion in Ads supernova Ex: a

34

These states can be built with the Euclidean path integral

Question

Answer; yes?

Procedure:
Start with
$$\psi_{HKLL} = \int dt' dx' K(t,t',x,x',z) O(t',z')$$

Problem:
$$\left[\phi_{HKLL}, H_{CFT} \right] \sim \frac{1}{N} \neq 0$$

Lo Boundary dressed.

$$\hat{\Phi} = \int dT e^{-iTH} P_0 \Phi_{HKLL} P_0 e^{iTH}$$

Answer: yes.

Procedure:
Start with
$$\psi_{HKLL} = \int dt' dx' K(t,t',x_1,x',z) O(t',z')$$

$$\hat{\Phi} = \int dT e^{-iTH} P_{0} \Phi_{HKLL} P_{0} e^{iTH}$$

 $-t^{*} P_{0} \Phi_{HKLL} P_{0} e^{iTH} P_{0} e^{iTH}$
 $P_{0} e^{iTH} P_{0} e^{iTH} P_{0} e^{iTH} P_{0} e^{iTH}$
 $P_{0} e^{iTH} P_{0} e^{$

Using
$$|\langle \Psi(t) | \Psi \rangle|^2 \sim e^{-t^2 \Delta H^2} \sim e^{-t^2 N^2}$$

One can show i

$$O < V (CH, \hat{\Phi}) V \sim O(e^{-N^2})$$

=D to leading order in
$$1/N$$
, $\frac{3}{2}$ also creates
a particle that will be detectable at to $\frac{37}{37}$

The interpretation:

$$\Phi_{HKLL}$$
 was a bulk operator that was
dressed to the boundary.
 $\widehat{\Phi}$ is an operator that is dreesed to
a feature of the state. It is "state-dressed".
a feature of the state. It is "state-dressed".

The interpretation:

$$\Phi_{HKLL}$$
 was a bulk operator that was
dressed to the boundary.
 $\widehat{\Phi}$ is an operator that is dressed to
a feature of the state. It is "state-dressed".
a feature of the state. It is "state-dressed".
(38)

Conclusion

· Operator algebras are an interesting framework to probe semi-classical Q.G.

· Provide an algebraic interpretation of the Bebeustein-Hawking formula for BH entropy.

They make mathematically precise statements on how locality emerges as GN-PO, in agreement with our intuition that we live in a local world.

Thank You ?

Pizza V long Live Fried And