Quantum groups as global symmetries

Bernardo Zan University of Cambridge

Sep 23rd, 2024

Based on 2410.xxxx with Barak Gabai, Victor Gorbenko, Jiaxin Qiao, Aleksandr Zhabin

1

A $U_q(sl_2)$ symmetric spin chain

Early example of quantum group symmetry on the lattice [Pasquier, Saleur '90]

$$\mathcal{H}_{\mathsf{PS}} = \sum_{i=1}^{N-1} \left(\sigma_i^{\mathsf{x}} \sigma_{i+1}^{\mathsf{x}} + \sigma_i^{\mathsf{y}} \sigma_{i+1}^{\mathsf{y}} + \frac{q+q^{-1}}{2} \sigma_i^{\mathsf{z}} \sigma_{i+1}^{\mathsf{z}} \right) + \frac{q-q^{-1}}{2} \left(\sigma_1^{\mathsf{z}} - \sigma_N^{\mathsf{z}} \right)$$

$$q = e^{i\theta}, \ \theta \in \mathbb{R}.$$
Observe **degeneracies** in the spectrum, explained by
$$q = 1: \ SU(2) \text{ symmetry}$$

$$q \neq 1: \ U_q(sl_2) \text{ symmetry}$$

Quantum groups, e.g. $U_q(sl_2)$, algebras that appear in several systems

- 1 + 1 D spin chains, 2D statistical mechanical models (e.g. loop models) as **global** symmetries
- Integrability: Yang-Baxter equation
- In QFT, they appear more **indirectly**:
 - * Crossing kernel of Virasoro blocks in minimal models \rightarrow 6*j* symbols of $U_q(sl_2)$
 - * Fusion rule for $SU(2)_k$ WZW models \rightarrow fusion rules of $U_q(sl_2)$

Global Symmetries in the Continuum?

In 2d CFTs $U_q(sl_2)$ appears in a subtle way in theories with no $U_q(sl_2)$ global symmetry (e.g. Ising model).

 $\mathcal{H}_{\mathrm{PS}}$ is **critical**: described by CFT with $U_q(sl_2)$ global symmetry!

Questions:

- CFTs with $U_q(sl_2)$ symmetry?
- Why does this have to do with non- $U_q(sl_2)$ symmetric theories?
- Related somehow to non-invertible symmetries? In some loop models, they seem to explain the same phenomena [Read, Saleur '07] [Gorbenko, BZ '20] [Jacobsen, Saleur '23]

Quantum Group

A quantum group is not a group! Deformation of sl₂ algebra

Coproduct

Action of E, F, H on one spin/operator, how do they act on many? Coproduct Δ

 sl_2 : $\Delta(X) = X \otimes \mathbb{1} + \mathbb{1} \otimes X$, with X = E, F, H

Coproduct Δ needs to be compatible with the commutation relations, e.g. $\Delta([E, F]) = [\Delta(E), \Delta(F)].$

 $U_q(sl_2)$: deformed commutation relations \rightarrow deformed coproduct. Many chocies

$$\Delta(E) = E \otimes 1 + q^{-H} \otimes E$$
$$\Delta(F) = F \otimes q^{H} + 1 \otimes F$$
$$\Delta(H) = H \otimes 1 + 1 \otimes H$$

Why not a group?

For sl_2 , get group element by

$$g = e^{i lpha X}$$

given $\Delta(X) = X \otimes \mathbb{1} + \mathbb{1} \otimes X$, coproduct acts as

$$\Delta(g) = g \otimes g$$

For $U_q(sl_2)$, non-trivial coproduct prevents us from building group-like element with these ingredients.

(non-invertible symmetries are still group-like, $\Delta(g) = g \otimes g$)

Representations

If q not a root of unity, $q^p \neq 1 \ \forall p \in \mathbb{Z}$, representations are the same as su(2)

$$|\ell,m\rangle, \qquad 2\ell\in\mathbb{Z}_{\geq 0}, \quad m=-\ell,\ldots,\ell$$

Generators

 $\begin{array}{l} H \left| \ell, m \right\rangle = 2m \left| \ell, m \right\rangle \\ E \left| \ell, m \right\rangle \sim \left| \ell, m + 1 \right\rangle \\ F \left| \ell, m \right\rangle \sim \left| \ell, m - 1 \right\rangle \\ E \left| \ell, \ell \right\rangle = F \left| \ell, -\ell \right\rangle = 0 \end{array}$

Clebsch-Gordan coefficients, 6j-symbols, ...: now depend on q but work in the usual way.

Require $U_q(sl_2)$ to be an internal symmetry

- commutes with spacetime symmetries, $[U_q(sl_2), Virasoro] = 0$
- operators transform under $U_q(sl_2)$: $\mathcal{O}_{\ell}^m(x)$ is in representation $|\ell, m\rangle$.

Correlation functions obey Ward identities!

$$\langle X \cdot (\mathcal{O}_1 \dots \mathcal{O}_n) \rangle = 0 \qquad X = E, F, H$$

Consequence: \mathcal{O}_i cannot be mutually local!

QFT in Euclidean space: for mutually local operators

$$\langle \dots \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\dots\rangle = \langle \dots \mathcal{O}_2(x_2)\mathcal{O}_1(x_1)\dots\rangle$$

Example: $\ell = \frac{1}{2}$ representation of $U_q(sl_2)$, $\mathcal{O}_{\pm} \equiv \mathcal{O}_{\frac{1}{2}}^{\pm \frac{1}{2}}$. Ward identity
 $\langle F \cdot (\mathcal{O}_+(x)\mathcal{O}_+(y)) \rangle = 0$
using $\Delta(F) = F \otimes q^H + \mathbb{1} \otimes F$ get
 $q \underbrace{\langle \mathcal{O}_-(x)\mathcal{O}_+(y) \rangle}_{(-1)^{2s}\langle \mathcal{O}_-(y)\mathcal{O}_+(x) \rangle} + \langle \mathcal{O}_+(x)\mathcal{O}_-(y) \rangle = 0$

with $s = h - \hbar$ the spacetime spin.

$$\langle \mathcal{O}_+(x)\mathcal{O}_-(y)
angle = -q(-1)^{2s} \langle \mathcal{O}_-(y)\mathcal{O}_+(x)
angle$$

For $q \neq \pm 1$, either $s \neq \mathbb{Z}/2$ or operators do not commute. In any case lose mutual locality

Topological lines

Easiest way to lose locality: operators are endpoints of lines. Lines are topological

(An object exists to swap operators, the \mathcal{R} -matrix)

An example

 XXZ_q : deformation of XXZ with non-local interactions [Grosse, Pallua, Prester, Raschhofer '94]. Central charge and spectrum are known

$$q=e^{i\pirac{\mu}{\mu+1}}\qquad c=1-rac{6}{\mu(\mu+1)}\qquad ext{with }\mu\in\mathbb{R}_+$$

operators are in the Kac table (easier to study).

Non-trivial check I: spacetime and $U_q(sl_2)$ spin satisfy constraints given by existence of topological lines + \mathcal{R} -matrix.

Non-trivial check II: the theory is crossing symmetric. Found all OPE coefficients by two different method

- Bootstrap approach à la BPZ
- Coulomb gas approach

Well defined $U_q(sl_2)$ symmetric CFT!

Connection with unitary theories

Some explanation of the appearence of $U_q(sl_2)$ in minimal models

- For integer μ (c as unitary minimal models), the theory has a closed subsector.
 E.g. c = 1/2, XXZ_q ⊃ fermionic formulation of the Ising model (1, ψ, ψ, ε).
- Explains the appearence of 6*j*-symbol in crossing kernel. E.g. operators with weights (*h*_{1,s}, *h*_{1,1} = 0) in XXZ_q: crossing symmetry of four point function

$$\mathcal{F}_{1,s'}^{(t)}(z) = \sum_{s} \underbrace{\frac{C_{(1,s_1),(1,s_2),(1,s_j)}C_{(1,s_3),(1,s_4),(1,s_j)}}{C_{(1,s_2),(1,s_3),(1,s_k)}C_{(1,s_4),(1,s_1),(1,s_k)}}_{\text{OPE coefficients}} \underbrace{\left\{\frac{\frac{s_1-1}{2}}{2} + \frac{s_2-1}{2} + \frac{s_1-1}{2}\right\}_q}_{6j-\text{symbol}} \mathcal{F}_{1,s}^{(s)}(z)$$
t-channel Virasoro block $h = h_{1,s'}$
s-channel Virasoro block

Lesson learned: QFTs can have quantum group as a global symmetry!

Open questions:

- Understanding relation to topological defect lines e.g. in minimal models
- Focused on CFT, but can deform XXZ_q by relevant perturbation preserving $U_q(sl_2)$. Integrable
- Generalization to $U_q(sl_{N\geq 3})$
- Codimension 2 operators in higher dimensions