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Introduction

Strongly coupled physics is notoriously difficult to access, especially
analytically.

We do not have small parameters in which to do a perturbative
expansion. Our most basic notions of field theory are of a perturbative
nature.

Make use of symmetries, look at special limits/subsectors where things
simplify.

Examples:

» large-N limit, 't Hooft limit

* € expansion

* supersymmetric sectors

* large spin

* integrability



Introduction

Study theories with a global symmetry group.

Hilbert space of the theory can be decomposed into sectors of fixed
charge Q.

Study subsectors with large charge Q.

Best case scenario: Large charge Q becomes controlling parameter in a
perturbative expansion!

Effective theory at large Q:

vacuum + Goldstone + |/Q-suppressed corrections

Working at large charge Q always leads to simplifications. For hard
problems, large charge may however not be enough (combine with other
limits, etc.)



Introduction

Conformal field theories (CFTs) play an important role in theoretical

physics:

. o AN
ﬁx.e.cl points in RG flows \\(//\\\Q\\\(\\ /’/)//

- critical phenomena ;/'l_/'/”/ﬁf\\

* quantum gravity (via AdS/CFT) \\\jf//f(/(@\)h

- string theory (WS theory)

But: CFTs do not have any intrinsic scales, most have by naturalness
couplings of O(I).

Possibilities: analytic (2d), conformal bootstrap (d>2), lattice calculations,
non-perturbative methods...

Prime candidate for the large-charge approach.
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Introduction

The large charge expansion is complementary to other CFT approaches
like large spin and the conformal bootstrap:

A X Q3/2
A N
Ax ]’ Large %//
//% Charge -,’
\\\ / )’

Booth bootstrap and large spin are based on crossing symmetry



Introduction

) Q

works especially well for strongly coupled systems!
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Introduction

Is the microscopic theory
accessible!?

weakly coupled

yes
large-N limit / N‘
€ expansion
susy strongly coupled
integrable ¥

work @large Q

A4

large-Q EFT,

expansion in |/Q
go beyond perturbation theory in 1/Q, calculate
non-perturbative (exponential) corrections!

8

large Q + large N
large Q + € expansion
large Q + susy

large Q + integrability



Introduction

The seem to be 2 main categories of behavior for systems at large
quantum number:

Superfluid

isolated vacuum

Wilson-Fisher CFT
NRCFT (unitary

EFT of the moduli
space

moduli space of vacua

free boson
N=2 theories in 4d

Fermi gas)

N=2 SCFT in 3d
asymptotically safe
model in 4d

NJL model




Introduction

To which models can we apply the large Q expansion?

O(N) vector model in 3D
NJL in 3D
non-relativistic CFTs

integrable models
SCFTs

10



The O(2) model



The O(2) model

Simplest example: O(2) model in (2+1) dimensions

Luy = 0,0%OMp— g° (¢ )"
Flows to Wilson-Fisher fixed point in IR.

Assume that also the IR DOF are encoded by cplx scalar

er =aeX  Global U(l) symmetry: x — x + const.

Look at scales: put system in box (2-sphere) of scale R
Second scale given by U(1) charge Q:

,01/2 N Ql/z/R
Study the CFT at the fixed point in a sector with

| 01/ o UV scale

cut-off of effective theory
12



The O(2) model

Fixing the charge breaks symmetries:
S0(3,2) x O(2) — SO(3) x D x O(2) ~» SO(3) x D’

/

D' =D — u0O(2)

Broken U(1) - superfluid!
Dynamics is described by a single Goldstone field X:

can get this purely by
/
Lro = ks/2(9.x 0" x)*' dimensional analysis

Lowest-energy solution: homogeneous ground state

Nnon-const. vev
X = ut, <

Beyond LO: use dimensional analysis, parity and scale invariance to
determine (tree-level) operators in effective action (Lorentz scalars of

scaling dimension 3, including couplings to geometric invariants)

13



The O(2) model

Use p-scaling to determine which terms are not suppressed:
Ox ~ pt% 9.9~ p /4

Result for NLSM action in D=3:
__~LO Lagrangian - curvature coupling

L = ks/o(0,x0"X)%? + k1 o R(9,,x0" )/ + O(Q™/?)

dimensionless parameters suppressed by inverse
powers of Q

Energy of classical ground state at fixed charge:

. . cannot be calculated
2 dimensionless parameters

ithin EFT!
/ \ Wi o
63/2 Q3/2 C1/2 R\/VQl/Z 4 O(Q—l/Z)

oS

dependence on manifold

Es(Q) =

14



The O(2) model

Expand action around GS to second order in fields: x = pt + X

L = k3/2,u3 + kl/gR,u -+ (675)2)2 — %(V52)A<)2 - ...

Compute zeros of inverse propagator for fluctuations and get dispersion
relation: 7

We — ——
p \/54/

= X is indeed a “conformal” Goldstone

dictated by conf.invariance 1/vd

Are also the quantum effects controlled!?

Yes! All effects except Casimir energy of X are suppressed (negative -
scaling).

Effective theory at large Q:

vacuum + Goldstone + |/Q-suppressed corrections

19



The O(2) model

We're ready to calculate observables:
CFT: conformal data (scaling dim. + 3pt coefficients)!

Use state-operator correspondence of CFT:

R R x S9-1
H . <D
D

conformal so-1--

. . ener
dimension —™/™— &Y

Scaling dimension of lowest operator of charge Q:
/energy of class. ground state
D(Q) = Ro(Eo + Ecas) = ¢3/2Q%% + ¢1 Q" — 0.0937 - + O(Q™"/?)

quantum correction from Casimir energy of Goldstone

S. Hellerman, D. Orlando, S. R., M. Watanabe, arXiv:1505.01537 [hep-th]
16



The O(2) model

Testing our prediction:

C3/2 _
D(Q) = 32Q* + 2V 1 5Q? — 0.094 4+ O(Q/?)
/T
Independent calculation on the lattice:
14 . .
12 | —
10 | . 1 Excellent
gl e | agreement!!
S}
e
6 r 1 c3/2 = 1.195(10)
4 + | 01/2 — 0075(0)
2 AE/E/E MC data -
) . . . O fit —
works for small = 2 4 6 8 10
C h a r’ge . Wh)l7 7 Q D. Banerjee, Sh. Chandrasekharan, D. Orlando [hep-th/1707.00711]

Large-charge expansion works extremely well for O(2).
17
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Beyond O(2):
3d O(2N) vector model

18



Beyond O(2)
Where else can we apply the large-charge expansion!?

Obvious generalization in 3d: O(2N) vector model
non-Abelian global symmetry group: new effects

Different symmetry breaking patterns possible, inhomogeneous ground
states possible.

Homogeneous case: same form of ground state,

SO(3,2) x O2N) - SO3) x D xU(N) = SO(3) x D' x U(N — 1)

We expect dim[U(N)/U(N-1)] = 2N-1 Goldstone d.o.f.

On top of the conformal Goldstone of O(2),a new sector with N-I non-
relativistic type |l Goldstones and N-| massive modes with m=2p

appears.

19



The O(2N) vector model

Dispersion relation: @
W= + Op~°

The non-relativistic Goldstones count double.

Nielsen and Chadha; Murayama and Watanabe

Counting type | and type Il modes, indeed,
14+2(N —1) =2N — 1 =dim(U(N)/U(N — 1))

Non-relativistic Goldstones contribute to the conformal dimensions only
at higher order.

The ground-state energy is again determined by a single relativistic
Goldstone!

Same formula for scaling dimensions as for O(2):

/N-depen%jt /universal for O(2N)
D(Q) = S22 2v/ e12Q 2 — 0.094+ O(Q™/?).
2y ——_ verified at large N for

CP(N |) model de la Fuente

20 L. Alvarez-Gaume, O. Loukas, D. Orlando and S. R., arXiv:1610.04495 [hep-th]



The O(2N) vector model

Testing our prediction:
D(Q) =

C3/2
2./

Lattice data for O(4) model:
12 —

Q32 + 2/ ey /5QY? — 0.094 + O(Q~1/?)

10

63/2 — 1068(4)
01/2 — 0083(3)

D{, J)

o5 1 15 2 25 3 35 4 45 5
_ D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. 1902.09542
J

Again excellent agreement with large-Q prediction!
21



The O(2N) vector model

Testing our prediction:

D(Q) = 26?:%@3/ 2 1 9/m e 5QY2 — 0,094+ O(Q1/?)

Numerical bootstrap data for O(3) model:

A
7
0
5
4 /=0
/=2
3
2
I
_2 3 4 5) 6 ? J.Rong, N. Su, 2311.00933

Again excellent agreement with large-Q prediction!

22



The large-N limit

Standard large-N methods, expand path integral at fixed charge around
saddle point (no EFT!)

Extra control parameter at large N: can go further!

Start in the UV with
Sl =Y [ At [g (3},00)1(9}00) + r(6]1) |

U
2N

(6]6:)*
For r=R/8, this flows to the WF fixed pt in the IR, v —

Scaling dimension for Q/N>>1:

A(Q) B 2 [ O 3/2 1 /O 1/2 - 0 —1/2 -1 0 —3/2
ON 3 (2_N> MG (ﬁ) 720 (ﬁ) 181440 (ﬁ) e

\ L. Alvarez-Gaume, D. Orlando, S.R. 1909.02571
same Q-Scaling as in EFT
Small charge limit, Q/N<<I: engineering dimension of ¢

Q 2 2N ON
In this limit, the operator of charge g is @Y

AQ) _174Q ,O<@>2



The large-N limit

NLO in N: reproduce dispersion relations of Goldstones.

Find coefficients of the expansion (leading order in N):

1 /2 1 /N
C3/2 — 5 T C1/9 = = —
273V N 273\ 2
Comparlson Of reSUItS: L. Alvarez-Gaume, D. Orlando, S.R. 1909.02571
N. Dondi, G. Sberveglieri 2409.06781
0.45+ — LO at Large N i
] -~ — LO at Large N
--- NLO at Large N | 0.45
0.40. i ) 7 - NLO at Large N
® Lattice MC
] 0.40-
Lattice MC I
0.35+ I
03/2 | @ Bootstrap ) 61/2 035
0.301 '® Lattice MC |
~~~~~ 0.30 ?
~~~~~~~~~~ : * Lattice MC
025 T 0.25- Bootstrap |
| s
2 ‘ e | ‘ e ‘ ‘ 7/\"‘ ‘ \ L ! L
0207 3 4 5 6 7 8 0.207, 3 A 5 3
N N

D. Banerjee, Sh

. Chandrasekharan, D. Orlando, S.R. 1902.09542

24
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J.Rong, N. Su, 2311.00933




Resurgence analysis

Since we can compute all the coefficients of the large-Q expansion, we
can do a resurgence analysis to relate the large and small-charge regimes.
Asymptotic series which diverges as (2L)!

We can write the transseries. Find non-perturbative corrections:

6—27rk\/Q/(2N)

Geometric interpretation: particles of
mass J propagating on the equator of
the 2-sphere.

CFT + resurgence: This picture must work for any N!

The optimal truncation is O(1/Q) terms.This explains why the
comparison to the lattice calculation works so well.

A. Dondi, I. Kalogerakis, D.Orlando, S.R, arXiv: 2102.12488 [hep-th]

2%
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Fermions@large Q
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Fermions@large Q

Will large Q work for fermionic models?

Antipin, Bersini, Panopoulos;

Let’s start with the multicomponent Nambu-Jona-Lasinio (NJL) model,
also known as the chiral Gross-Neveu (GN) model in 3D:

ScGN = —/dgl’ [%z’&m | 23]\7 ((?%1%)2 + (@Eai%?ﬂa)Qﬂ

There are two conserved currents:
gt = Py, 5o = Py
We can study this model at large N with standard methods.

We find that only the axial charge gives rise to a condensate at criticality.

Scaling dimension: large Q/N
A ,/\@ 0 \**? 1 0\

|3\/§
2

— — | — -+ ... Dondi, Hellerman, Kalogerakis, Moser, Orlando, S.R.,
2N w2\ N 2211.15318

small Q/N

27


https://arxiv.org/abs/2211.15318

Fermions@large Q

Like for the scalar case, we get a condensate at fixed charge, but not WF
universality class.

Can go to a different frame using the Pauli-Gursey transformation:

o %(1 — )b + %(1 +7°) O,

SBCS — —/d?’x {&aiawa | 2?\[ (%EaC@E;F) (wgcwb)}
This model gives rise to superconductivity from Cooper pair formation!

The condensate consists of Cooper pairs - superconductor!

The end result is similar to the scalar case in the sense that we have an
EFT in terms of Goldstones fluctuating around a condensate.

28
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Nonrelativistic CFTs

Motivation: unitary Fermi gas (3+1)D

Can be realized in the lab via cold atoms in a trap. Tuning via

Feshbach resonances: unitary point, correlation length = o,
interaction length = 0

N

Condensation

|\I"\P\
N © g
e
%;L“, /:, lg
>,0’ < ) '
*e ¥
luid % oal oo
l
1
< BCS 1/(kea,) BEC—>

Attraction—>

At unitary point: described by a non-relativistic superfluid.
Effective action (small momentum expansion)

Son & Wingate

30



Nonrelativistic CFTs

What is a nonrelativstic CFT?

Non-relativistic systems are not invariant under the full conformal group.

Schrodinger algebra: contains the Galilean algebra with central extension

(particle number) plus real

. / parameters
scale transformation: (¢, z;) — (t',z}) = (e*"t,e"z;)

v T
. o . ta i) —7 tla 1) = 9 Z
special conf. transf: (¢, z;) — (¢, z;) (1 npvikpn At)

The Schrodinger Lagrangian (in d space-dim) is invariant under Schrodinger
symmetry:

. h k a2 d+2
L) = 5 (70 — 0" — 5 01" Ot mﬁT(z;*w)T
N

scale most general potential
21 compatible with symmetry



Nonrelativistic CFTs
Let’s build an EFT at large Q!

System has an inbuilt a global U(l) symmetry (charge=particle number).
Follow the same recipe as for O(2): ) = ae'

The leading piece of the effective action for 6 can be found by dimensional

analysis:
£O) = oo hC=d)/2),d/277(d+2)/2

U = 0,0 " 0,0 0,0

2m

Homogeneous ground state:
y P
T

0 = ut + x u==k

The first quantum correction to this (semi-classical) result is the Casimir

energy, It goes as Ql/d S. Favrod, D.Orlando, S R.1809.06371
32



Nonrelativistic CFTs

Also for NRCFTs, the form of the two-point function is fixed:

exp [1@2 2:}
(t1 — t2)2

(O1(21)O2(x2)) = cOA,,0200:,-Q-

There is also a state-operator correspondence for NRCFTs:
h kA energy of

conformal /
' ' ¢ - system in
dimension
R / harmonic
\E Li':ju‘»i-i , W,
\ t RO "":':f(’fl,,;"f“*" trap
W), i § S 2
([ Ao(7) = 55|77
\/\ < /5

This interestingly corresponds to the situation in the lab!

33



Nonrelativistic CFTs

Disadvantage: charge distribution is inhomogeneous (but spherically symmetric).

200

particle cloud - =
0 £
- >

-200
-200 0 200

X [nm]

E’ge-density

Bulk EFT breaks down near the edge of the particle cloud.

Need to include terms describing the physics at the cloud edge.

dim. analysis
Bulk EFT: Lro = coU¥?T! -~
ot Ly
U= x 27“\2 (0ix)

34 harmonic potential



Nonrelativistic CFTs

1
vev of U on ground state: (U) = p— §r2
Vanishes at the cloud edge, Ra = +/2u.

LO scaling dimension:

d
(d+1)/d
A(Q) d -+ 1CQ 1 I'(d+1) H

\/ﬂ F<§—|—2)CO

Include higher-order terms in the EFT: only operator allowed besides U and its

derivatives is 1
Z — VQA() — a(VQX)Q

All non-trivial composite operators that can appear have the form
O(m n) __ = Cinm (aiU)QmZnUd/2+1—(3m—l—27‘7<

bulk \ \
1 . o |nte ers ravec and Pa .
Wilsonian coefficients & Kravec and Pal, 1809.08188
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Nonrelativistic CFTs

Must also consider terms located at the cloud edge!

Most general form:
|nteger

Z(p) _ lipr(S a U (d+4(1—p))/3

edge
operator—valued delta-function
Wl I SON |an COeff IC | e nt Hellerman and Swanson, 2010.07967

The contributions of the bulk operators to A can have edge divergences if
*d is even
*the operator has positive Q-scaling

We can always regulate these divergences with an edge counter term of the
same |l-scaling.

This gives rise to log(Q) terms in A.

36



Nonrelativistic CFTs

Additionally, there is a universal log(Q)-term from the Casimir energy in odd d.

Ed=2  — _(.204159. ..
E3—|—2€ _ 1 |

Casimir 2\/76 | regular
A(Q) = —\/_ log(Q) + const. D. Orlando, V. Pellizzani, S. R., 2010.07942
0
° “protected by scale invariance
Scahng dlmenS|On IN d=3: / bulk Contr|but|ons
_ NH12/9 _ a a3z _
, , AQ) =@ Q6/9 | Q12/9 AR
edge contributions ___ _ , X -
5/9 o | i
+ Q" | by Q2/9 "ois +
bulk+edge __ - ; g g
2/9 2 | 3 |
. B e o I
Casimir energy — 1, t
I 3\/§ Og Q —I_ COLLSL. S. Hellerman, D. Orlando, V. Pellizzani, S. R., I. Swanson, 2111.12094
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Nonrelativistic CFTs

Large-N treatment:
Analogous to relativistic case (Stratonovich transform, integrating out fermions,
evaluate functional determinant)
Much harder - problem is not homogeneous - vev of collective field non-constant!
Perform gradient expansion

- reproduce the terms in the EFT (both bulk and boundary)

- can compute the Wilsonian coefficients in the bulk

/edge region A o\*? 0\ ?
7 — = 0.8313| —= 20310 — .
| N OSBS(N) + 0.263 5(N> +

S. Hellerman, D. Orlando, V. Pellizzani, S. R., I. Swanson, 2311.14793

| Bertsch parameter: ratio between the ground-
NLO  state energy of the Fermi gas at unitarity and that

. . . 25/2
of the noninteracting Fermi gas: ¢« = 5726372

¢ ~ 0.5906. .. reproduces mean-field value

Eexp A~ 0.37 ...
38
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Nonrelativistic CFTs

Nuclear physics:

Consider system with only neutrons: neutron-neutron scattering length very
large, system is near unitarity: described by NRCFT (same EFT as unitary
Fermi gas - non-relativistic superfluid) with small range and scattering length
corrections. “‘un-unclear physics” - nuclear physics w/o nucleons

Hammer and Son; Dutta Chowdhuri, Mishra, Son

Calculate n-pt correlation functions at large Q directly from insertions in the
path integral

T T T
2k

2-pt fn: Droplet of
superfluid evolving
between insertion
points.

o
r T - - -

S. Beane, D. Orlando, S. R., 2403.18898
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Nonrelativistic CFTs

Conformal dimension at unitarity:
4/3
AQ(Q) _ 3 61/2Q4/3 o 32/3\/_7_‘_ fCNLO QZ/S 4+ (D(Q5/9) 4 IOgQ

60f m Lattice
correlated Gaussian __—~*® £CG

: : 50, — LO
basis set expansion

NLO*

o ¢ =0.372(5)
\zé’ 302‘ CNLO — —00537(2)
20/
0]
0 1 Endres, Kaplan, Lee, Nicholson; Yin, Blume

Range and scattering length corrections :

dimensionless Wilsonian parameters

N

Loy = gra 'mU? + goa?m'2U%2 + hyrm?U3 + hor?*m®2U"/? +

~. ~

scattering length effective range
40



Nonrelativistic CFTs

Energy per particle : scattering length effective range
2 [\ / O\
E/N = 5> °F E,—i— 2 .+ NKET + M K312 4+ ...
52M kra k%az F
4 -
T omavess Values of
. Wmm g ' corrections | )
: a~ ' rcorrections ; CoefﬁC|entS
3l ]
o | extracted from
= numerical data
=l AL | in the literature
N L AT T
[ LS
00 0de odd 0go6 0o 0010

P (fm_?’) S. Beane, D. Orlando, S. R., to appear
41






Summary

Concrete examples where a strongly-coupled CFT simplifies significantly
at large charge.

O(2N) model in 3d:in the limit of large U(1) charge Q, we computed the
conformal dimensions in a controlled perturbative expansion:

Excellent agreement with lattice results for O(2), O(4)

large Q and large N: path integral at saddle pt., more control than in
EFT, can calculate coefficients

can follow the flow away from conformal point, find the full effective
potential

NJL model: similar results, condensate due to Cooper pairs.
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Summary

Many other interesting applications!

NRCFTs are also highly suited for the large-charge approach.
U(l) symmetry: particle number
Examples:
unitary Fermi gas (4D)
nuclear reactions involving neutrons in the end state
anyons (3D)

State-operator correspondence involves harmonic potential.

Can compute 2- and 3-point functions in the limit of large Q

44



Further directions

Further study of supersymmetric models at large R-charge (higher-

Hellerman, Maeda, Orlando, Reffert, Watanabe;

dim. mOdUI| SpaceS) Argyres et al.

Loukas, Orlando, Reffert, Sarkar;
De la Fuente, Z0sso;

Connection to holography (gravity duals) Giombi, Komatsu. Offeraler:

Perlmutter et al.

Operators with spin; connection to large-spin results

Cuomo, de la Fuente, Monin, Pirtskhalava, Rattazzi; Cuomo

Use/check large-charge results in conformal bootstrap

Jafferis and Zhiboedov; Rong and Su

Further lattice simulations: inhomogeneous sector, general O(N)

Chandrasekharan et
Singh

CFTS in Other dimensiOns (2’ 5’ 6) Komargodski, Mezei, Pal, Raviv-Moshe;

Araujo, Celikbas, Reffert, Orlando;
Moser, Orlando, Reffert

I nteg I"a b i I ity a n d I a rge Q Dodelson, Hellerman, Watanabe, Yamazaki
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Further directions

Chern-Simons matter theories @large charge

Watanabe

4-g expansion @large charge Badel, Cuomeo, Monin. Rattars: Watanabe:
Antipin et al.

going away from the conformal point Orlando, Reffet, Sannino;
Orlando, Pellizzani, Reffert

T 2 Favrod, Orlando, Reffert; Kravec, Pal;
n O n re I atIVI Stl C C FTS Orlando, Pellizzani, Reffert;

Hellerman, Swanson; Pellizzani

Boundary CFTs at large Q

Cuomo, Mezei, Raviv-Moshe

Swam P I an d ) Weal( graVity CO nj eCtu re Aharony, Palti; Antipin et al.

Orlando, Palti

Study fermionic theories. Can large-charge approach be used for QCD

Komargodski, Mezei, Pal, Raviv-Moshe;

(e .g. Ia I"ge ba r)’O n n U m b e I") ? Antipin, Bersini, Panopoulos;

Dondi, Hellerman, Kalogerakis, Moser, Orlando, Reffert;

Gauge theories @large charge, Standard Model

Antipin, Bersini, Sannino et al.
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Integrability and Large Charge



Integrability and Large charge

The large charge-expansion can be applied to integrable models to
actually solve them.

Just like combining large Q with large N gave us more control, also
combining large Q with integrability gives us extra control.

This has been done for several examples.
Sometimes, integrability emerges in the large-charge sector.

I'll briefly review 2d models:

CFT:SU(2) WZW model and its marginal deformation
massive integrable case:YB deformed SU(2) PCM

49



Integrable systems in 2d

In 2d CFTs, the U(1) sector decouples from the full dynamics at large

charge.
It cannot be used to write an EFT as a large-charge expansion that
ContrOIS the dynamiCS. I;fg?ggggki,Mezei,Pal,RaViV_MOShe,

It is however possible to use the large-Q expansion to simplify models

with a known NSLM description:
Work in a double-scaling limit (large Q and controlling scale), use e.g.
WKB approximation to compute conformal dimensions.

We find that the scaling dimension of the lowest operator of charge Q
takes the form of an expansion in |/Q starting at O(Q?).

Can verify these result in the case of solvable models.

50



Integrable systems in 2d

Example: SU(2) WZW model.

K . -1
S = T dzdzTr[@”g 6Hg] + kI,

B 1 3 —1 -1 —1
"= 2471Jd yeapy Tr[g™ 0%gg™ 2P gg™ 07 ]

WZW models admit a geometrical description for k — oo

SU(2) WZW: NLSM on target space S°
Global SU(2)xSU(2) symmetry, can fix 2 charges (left and right U(1))

In the limit k > Q, Q > 1, we find using the WKB approximation

W (Q+Q(Q+Q+2)
2k

Araujo, Celikbas, Orlando, S.R., 2112.03286
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Integrable systems in 2d

Continuous line of marginal deformations generated by
szdi B
Breaks global symmetry down to U(1)xU(I)

Scaling dimension of lowest charged operator:

W (Q+QQ+Q+2) 1—7\2(Q2 Qz)
2(k + 2) 2k | A2

Can verify by specializing to the fixed-charge sector in the exact partition
function!

Interesting approach to study more general model without known exact
solution.
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Integrable systems in 2d

Integrability is an accidental property of generic 2d O(2)-symmetric
asymptotically free theories when the charge density is much larger than
the dynamical scale.

Exists infinite tower of higher spin conserved currents in the most
generic EFT at Iarge Chemical POtentia—I- Dodelson, Hellerman, Watanabe, Yamazaki,

2310.01823
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Integrable systems in 2d

We have seen that for 2d CFTs, the U(1) sector does not control the
dynamics. Let’s instead study a massive case that is integrable.

We can start from the thermodynamic Bethe ansatz equations - the
thermodynamic limit is actually a large-charge limit!

b
X0 —/BK 0 —0'] x [0'] d0' = mcoshl], 6% < B

From here, we can get the energy density which is in turn related to the
free energy by a Legendre transform.

By studying the large P, or equivalently, large B asymptotics, Volin found
an expansion of the energy density in terms of |/B for the O(N) vector
model - secretly a large-charge expansion.

Volin, 0904.2744
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Integrable systems in 2d

Can apply Volin’s method to other integrable systems, e.g. the Yang-Baxter
deformed principal chiral model for SU(2):

_ —1 1 —1
Zemlg) =Tr (g 0+97— "R CRo? 0-g | .
Work at n small, (=0 and B large — perturbative expansion in
asymptotically free theory

2 1 1 5  3C(3) log2
E2(e/p?) =a + — + o ( - 1 ‘ :
e/p) =at 5 +a (4 6ﬁ> T 16 32 T ep

1
_ 4 2 N
5(53 9¢(3)  1—3log2+ 2(log2) ) ;

96 64 165

Next step: find renormalon contributions to the free energy (poles or

b Fanc h cCuts | N th e BQ re I P | an e) Ashwinkumar, Orlando, S.R., Sberveglieri, to

appear

59



N=2 SCFT

Let’s start with the SCFT case.Things are very different for SCFTs with a
moduli space.

How can we write an EFT? Need extra ingredient.
Make use of SUSY properties.

Simplest case: systems with a |-dim. moduli space on the Coulomb branch.
The charge that is taken to be large is the R-charge and we want to write

the EFT of the Coulomb branch.

Since we are in D=4, there is a Weyl anomaly, which must be reproduced
in the EFT.

|D Coulomb branch: the EFT at large charge is encoded by single vector
multiplet.
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SCFTs at large R-charge

Coulomb branch is generated by O.

2-pt functions are a solved problem for BPS operators, scaling dimension
goes like Q

Compute 3-pt function on a conformally flat 4D space:

Onl y 102,701 +n2

(O™ (1) 0" (27) 0" (x2)) =

o ‘371 _ le2|2’n,1D(9‘:L./1 _ x2|2n2D@

Notice that the R-charge Qo x Do

OPE of chiral primaries is non-singular. Choose

r1 = I} O™ (21)O0"?(z1) = O™ 772 (1)

3-pt function becomes a 2-pt function:

Cn/,n—n’,ﬁ _ ‘wl o $2‘2nD@ <On($1)0n($2)> _ €Qn—QO o _
Write EFT controlled by nas @ =nDo
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SCFTs at large R-charge

|D Coulomb branch: EFT encoded by single vector multiplet.

Assume for now that free theory for cplx scalar is dominating in the large-

Q expansion:
CFT: no dependence on A

S:/ e gondg
]Rél

47

cplx scalar of vector multiplet

Im(7)
Introduce ¢ = \/ A O = Ny ¢Po

Now we can write down our 2-pt function:
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SCFTs at large R-charge

Rewrite /D¢ On(xl)on(xQ)e_Sfree — /D¢ 6_(Sfree‘|'s SSSSSSS )

/\

Sfree—l—sources — _QQ 1Og NO + /d4£li‘ [a’u¢a,u$ — Q10g¢5($ o .513‘1) T Q10g¢5($ o xQ)}

Minimize to find the fixed-charge ground state:

ptBolz1—z2] e~ tPolz1—x2]

o(r) = 5 \FQ &(QZ‘) — 2

- 2m(x — x9) - 21(x — 1)
Find value of the full action at the minimum:
Stun = @ [—2log No + 1 + 2log(27)] — Qlog Q
= k1Q — QlogQ + 2Qlog |x1 — x2| + O(Q)
— directly gives leading term in Q-expansion
21— 2P0 (21) 0" (22)) = et

gn = Qlog Q + k1Q + O(Q°)
59
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SCFTs at large R-charge

So far: used only free kinetic term.
In general, there will be higher-order corrections.

One can show that:

* all manifestly superconformal terms will give a contribution that is
subleading in Q

e theories with a |D Coulomb branch have no other F-terms

Only other possible term is the Wess-Zumino term in the bosonic action.

Necessary to compensate Weyl-anomaly mismatch between CFT and EFT:

Euler densit
— /

»CWZ = —7 2« E4(g)

Calculate on s* X
= §(CLCFT — aEFT)
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SCFTs at large R-charge

Contribution to action: T ~ —log|¢|
, / quantum corrections
SWZ cl - _(Oé + §) lOgQ in Sfree + SWZ
Full result: /

)

m=1

Can compute the k(o) perturbatively by expanding
¢ — ¢cl ¢fluc

Just like in the O(2) model, I/Q is the loop-counting parameter for the
theory of ?fiuc
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SCFTs at large R-charge quantum corr. in

Sfree + SWZ

I — qo = Qlog Q + k1Q + (a + 3 logcz+2
\—/—/ m=1

“class. ground state

Can in principle proceed order by order to compute quantum corrections.

Order 1/Q: ki(a) = 5(a® +a+ 3)
There’s a better way!

Use recursion relation for theories with marginal coupling.

85 _ 9n+1—qdn _ qn—(4dn-—1 Baggio, Niarchos, Papadodimas;
Qn — € € Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu;

Toda lattice equation. ndependent of T

Look for solution with EFT-inspired form /
= Qf(1,7) + ko(,7) + Qlog Q + (o + 3) log Q + Z o

62
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SCFTs at large R-charge

Solve recursion (using the result for ki(«)):

qn = 2nA(7,7) + B(7,7) +log'(2n + o + 1)

N\ / \universal, valid for
theory dependent
any theory, depends
only on a

Logic:
- EFT works for any theory (incl. non-Lagrangian)
- can solve it order by order via Feynman diagrams
- for Lagrangian theories, we can use the recursion relation

- result is valid for all theories, as it is independent of T.
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SCFTs at large R-charge

, universal
Solve known recursion: _—

gn =2n A(1,7) 4+ B(7,T) +log'(2n + o + 1)

For the case of SU(2) gauge theory with 4 flavors, we can compare our EFT

resu ItS to I OC&I | Zati oh resu ItSZ Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu;
Badn EFT result
g / numerics for
08 _ 2Iocalization
0.5-
0.3,  isassssssecessosseesocessosseesocsssssssesccsssssssccce 5
0 e e 20
38

30 40 50
Im T Hellerman, Maeda, Orlando, S.R., Watanabe, 1804.01535

Extremely good match for n>5!

EFT predictions have been verified. Grassi, Komargodski, Tizzanos
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SCFTs at large R-charge

We can even estimate the exponential corrections due to the propagation
of massive BPS particles:

A?l(q(rlmoc)—qfiﬂ) A%(16 e—m/Q)

| I I I I I I I I | I I I I |
3} 10 15 20
ImT

C an b e com P Ute d eXP I i C itIY! Hellerman, Maeda, Orlando, S.R., Watanabe, 2005.03021

Hellerman,Orlando, 2103.05642
Hellerman, 2103.09312
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