TIME-OF-FLIGHT (TOF) ION DIAGNOSTIC METHODS FOR HIGH-INTENSITY LASER PLASMA EXPERIMENTS

Prof. Claudio Verona

Didactic seminars introducing high-power lasers and their use in radiation production, nuclear physics and applications.

1st INFN Workshop onapplications.HUCE facility layout"High Power Lasers and their Applications" - HPLA2024

LASER-MATTER INTERACTION: ION ACCELERATION

Energy: from few mJ up to hundreds of J

Pulse duration: from tens of fs ("short pulse ") up to ns ("long pulse")

Focal spot size: from few up to tens of μm

For Laser intensities higher than 10¹⁸ W/cm² several laserdriven acceleration mechanism can occur

Energy spectrum of ion changes according to the interaction condition:

- ✓ Laser energy and intensity
- Target type
- ✓ Focal spot

ION DIAGNOSTICS

Laser-generated plasma emission:

- Protons
- ✤ Multi ion species
- ✤ X-rays and electrons
- Neutrons
- Electromagnetic pulse (EMP)

- Challenges for detection further arise from the harsh plasma environment.
- Experimental setups generally incorporate a combination of complementary devices featuring various detection principles, online and offline analysis and acceptance angles.

The ideal diagnostic system should have:

- High sensitivity
- High energy resolution

and should allow to retrieve:

- Spectrum of accelerated ions
- Angular distribution of accelerated ions
- Particle discrimination

but it also has to provide:

- Electro Magnetic Pulses (EMPs) robustness
- Real-time detection (in particular for high repetition rate lase)

ION DIAGNOSTIC: TRACK DETECTOR

- Solid state nuclear track detectors (SSNTDs) such as CR39 polymer and PM-355 plastic, are used to detect particles by observing their track inside the detector material.
- A particle striking the SSNTD deposits its energy by creating a proportional damage trail, referred to as a latent track, as it penetrates the detector. The geometry of this track (size and shape) depends on the incidence angle, energy and charge-to-mass ratio of the incident particle.
- The latent track is too small (few nanometers) to be observed optically but can be enlarged through chemical wet etching (NaoH). Etching dissolves the polymer to the point where the track opening is large enough (few micrometers) to be observed and imaged by an high resolution optical microscope.
- The etching process depends on several parameters such as etching time, temperature, concentration and inherent purity of NaOH solution, which can differ from one experiment to the other and material from the same manufacturer, resulting in different characteristics of the tracks.
- The reproducibility of the detector parameters affects largely the detector response.

ION DIAGNOSTIC: TRACK DETECTOR

0.3 MeV

0.3 MeV

16 h

12 h

Etching time

- SSNTD requires careful pit analysis, e.g., via numerical image processing of microscope data. Different particles of different energies might produce a pit of the same size.
- Calibration of SSNTD: exposure of the detector to known ion beams and the examination of the resulting tracks under different conditions of etching solution, temperature and time.
- Typical approach for particles discrimination consists of use of filters capable of stopping heavy ions, track shape/dimension/colour discrimination.

Solid State Nuclear Track Detector (SSNTD)

- Passive detector
- Time consuming (post processing&calibration)
- Strong background

Angular distribution

- Ion discrimination
- Energy Spectrum reconstruction

He, YF. Et al. NUCL SCI TECH 31, 42 (2020). M. S. Schollmeier et al. Sci Rep 13, 18155 (2023)

1.2

Proton energy (MeV)

1.7

0.7

0.2

2.2

ION DIAGNOSTIC: THOMSON SPECTROMETER

- Thomson Parabola (TP) spectrometers are well-known effective detectors used for discriminating ions with different $\frac{A}{z}$ ratio in high power laser experiments.
- An electrostatic and a magnetostatic field, both orthogonal to the incoming particle beam direction, determine a deflection of the particles leading to parabolic traces, each univocally corresponds to one $\frac{A}{z}$ ratio.
- TP parameters (deflecting fields) affect data acquisition. Indeed, high electric and magnetic fields are necessary for a suitable trace separation at high energies.
- Size and shape of the pinhole must be carefully selected to find the best compromise between resolution and sensitivity as well as the X-ray noise.
- Most used detectors are CCD screen with a micro channel plate (MCP) or image plate detectors as well as scintillators. Using calibrated detectors, it is possible to retrieve the absolute particle energetic spectrum.

ION DIAGNOSTIC: THOMSON SPECTROMETER

- An image is acquired with the TP and the recorded traces are overlapped with the corresponding parabolas. To every point of the parabola is assigned a velocity value which is converted into a kinetic energy value. The intensity value on the imaging plane is calibrated to a particle number so that reading out the intensity along the parabola with energy assigned to every point yields the energy spectrum for particular particle species.
- The parabolic traces of ion species with the same Z/A will overlap at the detector plane, preventing their spectra to be characterised. Ex: to detect the lightest of the overlapping ion species, foil filters in front of the detector, which would preferentially stop heavier ions and allow only lighter species to be detected.

Thomson spectrometers (TS)

- Ion trace overlaps with fully stripped ions (the same Z/A)
- Sensitive to EMP and X-ray radiation noise
- High voltage operation
- Active detector
- Ion discrimination according to mass-to-charge ratio
- Spectrum reconstruction

ION DIAGNOSTIC: TIME OF FLIGHT (TOF) TECHNIQUE

Time-Of-Flight (TOF) method is very effective to detect in "real time" contemporary electrons, protons and ions accelerated in laser-plasma interactions.

ION DIAGNOSTIC: TIME OF FLIGHT (TOF) DETETORS

The detectors generally used in the time-of-flight scheme can be grouped in three categories:

Electrostatic detectors

Ion collector or Faraday cups

- Small, robustness and reliability compact metallic device designed to catch charged particles in vacuum.
- Charged particle impinging on a metallic surface cause it to gain a small net charge, generating a electric current that can be measured by a fast oscilloscope.
- The resulting current can be used to determinate the number of ions or electrons hitting the cup.
- The detectors show low efficiency in detecting low-energy particles and secondary electron emissions can compromise the response of the detector.

Scintillator converts
 the incoming charged
 and neutral particles in

fluorescence light that is then detected by a photo multiplier tube (electric signal).

- Inorganic scintillators have a high light output and a slow response while organic scintillators (crystals, liquids, and plastics) have a low light output but are fast.
- High efficiency: suitable for low particle fluxes characterized by mid-low energies.
- High energy electrons and x- rays are a potential source of the background signal in the scintillators.

Semiconductor detectors

- Semiconductor based detectors are devices that use a semiconductor (i.e. Si, GaAs, SiC and diamond) to measure the impinging radiation. Main composition parts of such detectors are active region, constituted by low-doped or intrinsic semiconductor, and junctions located at two sides of the semiconductor.
- Charged particles deposit their energy generating *e*-*h* pairs that can be collected by applying an external electric field.
- Detection features depend on the semiconductor properties and detector layout.

TIME OF FLIGHT (TOF) SEMICONDUCTOR DETECTOR

TIME OF FLIGHT (TOF) DETECTOR MATERIALS

TIME OF FLIGHT (TOF) SEMICONDUCTOR DETECTOR

□ The different electrodes and geometry layout allow to cover a wide range of requirements

TIME OF FLIGHT (TOF) SEMICONDUCTOR DETECTOR

TIME OF FLIGHT (TOF) DETECTOR CHARACTERIZATION

8

CHALLENGES IN TOF: EMP AND DYNAMIC RANGE

Typical signals from Time Of Flight detector in Laser-Matter interaction experiments

CHALLENGES IN TOF: EMP AND DYNAMIC RANGE

EMP pollution poses a barrier to utilizing TOF detectors in high-energy Laser facilities.

It is necessary to optimize the acquisition system to work in these environments

Examples of time-domain signals measured with Antennas inside the vacuum chamber of the ABC and Vulcan facilities

(F. Consoli et al, High Power Laser Science and Engineering, (2020), Vol. 8, e22)

TOF signals have an intrinsic high dynamic range.

It is necessary to develop a technique able to appreciate the full dynamic range

ACQUISITION SYSTEM OPTIMIZATION: EMP MITIGATION

ACQUISITION SYSTEM OPTIMIZATION: EMP MITIGATION

Typical signals from TOF detector in Laser-Matter interaction experiments <u>after EMP optimization</u>

DYNAMIC RANGE ENHANCEMENT

- TOF detectors are connected to fast oscilloscope terminated in 50 Ω though commercial Bias-T.
- Dynamic range enhancement: the signal collected from the TOF detector is divided in two parts by a calibrated splitter, both having the same shape but half of the original amplitude. They are acquired by two different channels.

THE INGREDIENTS FOR THE SPECTRUM RECONSTRUCTION

ANALYTICAL SPECTRUM COMPUTATION

I° method*: For each temporal step, defined by the temporal response of the detector, we can calculate the charge and energy

$$\overline{Q_i} = \int_{t_1}^{t_2} \frac{S_D(V_i(t))}{R} dt \quad ; \ \Delta t = t_2 - t_1 = \tau_{drift}$$

$$\overline{E_i} = m_p \left(\left(1 - \left(\frac{v_i}{c}\right)^2 \right)^{-1/2} - 1 \right) c^2 \quad ; \quad v_i = \frac{d}{t_i - t_0}$$
(Energy error $\Delta E_i = m_p \frac{\delta \gamma_i}{\delta t} \Delta t c^2$)

Number of ions at fixed energy

at $\overline{N_i} = \frac{\overline{Q_i}\epsilon_g}{\eta(E_i)\overline{E_i}q_e}$

 $(error \ \delta \overline{N_i} = N_i(t_2) - N(t_1))$

II° method:** By deriving the *dN*, a relation for the signal and the energy distribution can be obtained

$$dN = \frac{\epsilon_g dQ}{q_e E} = \frac{\epsilon_g V(t) dt}{q_e ER}$$
; $E = m_p (\gamma - 1)c^2$

$$\left|\frac{dN}{dE}\right| \cong \frac{\epsilon_g V(t)t}{2q_e E^2 R}$$

A good agreement between the energy spectra extracted from two methods is observed.

*M. Salvadori et al. Scientific Reports 11, 3071 (2021) **G. Milluzzo et al. Rev. Sci. Instrum. 90, 083303 (2019)

TIME OF FLIGHT (TOF) FOR HIGH ENERGY PROTONS

➤ Laser-accelerated protons having a range less or equal than the detector's active thickness release completely their energy.

➤ High energy particles (tens of MeV) cross the detector volume, releasing only a portion of their actual energy within it, and the generated charge decreases accordingly.

The energy estimated through the TOF technique <u>differs</u> from the actual energy released in the detector by the particle. 4×10^{-13}

A correction factor $(CF(E_i))$ for energy released (or produced charge) in the detector must be calculated using SRIM or Geant4 Monte Carlo simulation.

CF = **1** the particle is stopped inside the detector: it releases the whole amount of its energy

CF < **1** only a portion of the particle energy is released in the diamond bulk

TIME OF FLIGHT (TOF) FOR HIGH ENERGY PROTONS

TELESCOPE CONFIGURATION

0

- Development of a telescope detector: A stack of multiple detectors arranged consecutively along the direction of ions impinging from laser-matter interaction.
- The main advantage of telescope detector lies in the ability to detect high-energy particles with good sensitivity, without compromising <u>energy resolution</u>.
- ➤ The use of thin detectors (i.e., 50 µm) could provide <u>high energy resolution</u> and a <u>high radiation hardness</u> for the entire diamond detector.
- ➤ The use of a thick detector (i.e. 300 -500 µm) as a stop placed at the end of the telescope is also required.
- ➤ The total thickness of the detector is given by the sum of all the detector thicknesses in the stack.

TOF-ION DISCRIMINATION

- \checkmark The simultaneous presence of large number of particles makes hard to discriminate them.
- ✓ TOF metodologies <u>but do not</u> supply information on the particle type.
- ✓ Particles reaching the detector at a given time instant have the same velocity, and thus the same energy per nucleon (Ex. 1 MeV protons or 4 MeV alpha particles or 12 MeV C⁶⁺?)

TOF-ION DISCRIMINATION

TOF @ 1 m (ns)

TOF @ 1 m (ns)

The choice for the thickness and material for each filter can vary depending on \geq the species to be discriminated.

C. Verona et al JINST 18 C07008 (2023)

ARRAY CONFIGURATION

- Development of TOF diamond detectors arranged in an array configuration with Al filters.
- ➤ Thanks to the different stopping powers of particles of different mass and energy within the filters it becomes possible to obtain more information about the respective particle energy spectrum.
- CR39 plates with the same filters are placed next to diamonds for comparison the results.

METHODOLOGY

- 1. We start with an assumption of laser-driven ion emission spectra distribution (Boltzmann Distribution for H, C and other ions, Gaussian distribution for He). Spectra distributions depend on few parameters.
- 2. We employ SRIM data tables to precisely track the energy loss of ions (H, He, C, O, Si, etc.) as they traverse through the filters.
- 3. Subsequently, we generate a calculated ion distribution impacting the detector for any given ion at any given energy.
- 4. As a first approximation, the altered ion distribution after passing through the filters modifies the amplitude of the signals (*y*-scale), while the Time of Flight (TOF) (*x*-scale) is correlated with the energies of ion emission spectra.
- 5. We then calculate the combined signals (V(t)) generated in the detector and compare them to the measured signals.
- 6. Using convergence methods, ion spectra parameters that best ft the measurements can be selected.

CONCLUSIONS

- ✓ The main ion diagnostics utilized in high-power lasergenerated plasma experiments (SSNTD, TP and TOF) are discussed.
- ✓ The optimization of the acquisition system, focusing on electromagnetic pulse (EMP) mitigation and dynamic range, for the Time of Flight (TOF) detector is presented.
- ✓ A telescope configuration for the TOF diagnostic is developed specifically for the detection of high-energy protons.
- ✓ An array of TOF detectors featuring different filter foils is proposed for ion discrimination.

GRAZIE PER L'ATTERNZIONE

Claudio Verona

claudio.verona@uniroma2.it

