

Luca Volpe, "Laser-driven particles & extreme plasmas", 1st INFN Workshop on "High Power Lasers and their Applications" - HPLA2024 Catania, Italy 12-01-2024

Laser-driven particle and extreme plasmas A required experimental platform

Luca Volpe

- ETSIAE Polytechnic University of de Madrid (UPM) - Scientific Advisor for Centro de Láseres Pulsados (CLPU) - ELI ERIC Co-ordinator for laser-induced fusion research

- ✓ Ion energy deposition in matter at extreme conditions is relevant for ICF, planetology and laboratory astrophysics
- ✓ It was demonstrated the scalability of the physical process from high energy long pulses to low energy short pulses laser systems.
- ✓ Ultra short high power lasers can provide dedicated experimental platforms for the study of ultra fast extreme plasmas

Extreme plasmas

EXTREME STATES are challenge

- ✓ Low Temperature & High density
- ✓ (Theory) Requires Quantum (T)
 many bodies (*ρ*) theories
- ✓ (Experimentally) require High
 frequency probes and XUV & X-ray
 technics

WDM parameters

$$\theta = \frac{k_B T_e}{E_F} < 10 \qquad \qquad \Gamma = \frac{e^2}{a(k_B T_e + E_F)} > 0.1$$

1. 11

Laser-driven ion sources

IN

Ion stopping power measurements in plasmas

- dE/dx in cold matter well known
- Linear with density (bound electrons)
- dE/dx in plasma (T(t),rho(t)) (free electrons)
 - Bragg peak $v_p \sim v_{th}$
 - WDM $T \sim T_F ~\rho \sim \rho_{Solid}$
- experimental results with resolution below tens of KeV

Theoretical background

- Zimmerman, G. Report no. ucrl-jc-105616. LLNL.(1990)
 Gericke, D. O. et al., Physical Review E, 65 (2003)
 Zylstra A. et al., Physics of Plasmas 26, 122703 (2019)
- [4] Casas D. et al., Phys. Review E 88, (2013)
- [5] Ding Y. et al., Phys. Rev. Lett. 121, 145001 (2018)

- [6] Faussurier G., et al., Physics of Plasmas 17, 052707 (2010)
- [7] Wang P. et al., Phys. Plasmas 5, 2977 (1998)
- [8] Zylstra A. et al., Phys. Rev. Lett. 114, 2015002 (2015)
- [9] Malko S., PhD Thesis (2020)
- [10] Malko S. et al., in submission to Nature Communications (2021)

Luca Volpe, "Laser-driven particles & extreme plasmas", HULSADOS INFN Workshop on "High Power Lasers and their Applications" - HPLA2024

POLITÉCNICA

A

Proton energy

Luca Volpe, "Laser-driven particles & extreme plasmas", HULSADOS INFN Workshop on "High Power Lasers and their Applications" - HPLA2024

POLITÉCNICA

etsion

Proton energy

proton wdm synchronisation

etisice POLITÉCNICA

Proton energy

final outcome @ CLPU

First demonstration of: ion stopping power in WDM for ultra-short conditions

Possible improvements

✓ Proton divergence needs to be reduced

✓ Proton pulse duration spread along the transport to go toward V_p/V_{th}

- ✓ We need to measure the proton pulse duration (ToF)
- ✓ Number of protons at the detector are very few need to increase efficiency (quadrupole)
- ✓ Warm Dense Matter generation must be optimise (Long focal pump)
- ✓ How to measure WDM temperature at the kinetic level?

Double pulse @ CLPU

✓ Proton divergence needs to be reduced (generation methods)

Luca Volpe, "Laser-driven particles & extreme plasmas", HULSADOS INFN Workshop on "High Power Lasers and their Applications" - HPLA2024

- LUCE

Possible improvements

\checkmark Proton pulse duration spread along the transport to go toward V_p/V_{th}

✓ Warm Dense Matter generation must be optimise (Long focal pump)

- ✓ Higher energy pump > 1 J
- ✓ Doubled in Frequency
- ✓ Long focal line focal spot of around 50-100 um
- ✓ Other schemes
 - ✓ Xray isochoring heating
 - ✓ Proton isochoring heating
- \checkmark Improvement of synchronisation

WDM temperature @ X-FEL

✓ How to measure WDM temperature at the kinetic level?

Thanks for the attention

It is by seeking the impossible that man has always achieved the possible.

Those who have wisely limited themselves to what appeared to them as

possible have never advanced a single step.

(Michael Bakunin 1814-1876)

1818 Caspar David Friedrich - Wanderer above the sea of fog

