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Laser-generated electromagnetic pulses

The interaction of high energy and high power laser pulses with matter generates a very

broad band of particle and electromagnetic radiation.

The main part of this radiation is ionizing, but there is
also a significant portion which is in the radiofrequency-
microwave-terahertz frequency range.

Transient electromagnetic pulses (EMPs) are regularly
detected in laser—target interactions with laser pulses
from the femtosecond to the nanosecond range

Remarkable intensity (up to the MV/m order and beyond)
and broad frequency range from MHz to THz.

Recognized as a major threat to electronics, computers,
diagnostics and  personnel. This requires the
development of effective protective measures.
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Scaling of laser-generated electromagnetic pulses

« EMPs scale with laser energy and mostly with laser intensity

« The different laser pulse regimes determine different band and intensity features of
the produced EMPs
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Laser-generated electromagnetic pulses

« The new high power and high energy laser facilities that will operate at high-repetition
rate require development of reliable methods of EMP detection and mitigation

* Their generation is still not very well understood. This is a very hot topics of research,
since understanding of EMP physics opens to a wide number of significant applications

* One of the recognized main mechanisms of EMP generation is the creation of a potential
on target, due to the fast emission of electrons.

« This potential triggers a neutralization current to ground, that can reach the kA level,
showing charges up to uC levels

'[ electrons

X
target

g

m F. Consoli, Philosophical Transactions of the Royal Society A -
Mathematical, Physical and Engineering Science A 379: 20200022




Target polarization

Target charging limited by two characteristic times: fo ()
« laser pulse duration 10
« cooling time of hot electrons in the target (up to ~10 ps)

0.75 |

Discharge time depends instead on the size of target and
stalk and on the impedance of the target support. 05t

potential barrier [eAd|

In typical conditions, for a pulse duration lower than a few o 1 2 3 a4 éT
ps, the target charging process is temporally separated
from the discharge process —» charge accumulation

Target potential defined by the temperature of hot electrons

Charge depends on target capacitance (fractions of pF)

Total accumulated charge varies from 10s of nC to a few

pC, depending on the laser pulse energy and duration. J . [10“]
las LPS

ENEN J.-L. Dubois et al. Phys. Rev. E 2014°

A. Poyé et al. Phys. Rev. E 2015




Target polarization

 For longer laser pulses, potential is established by a balance between the rate of
electron ejection and the amplitude of the return current through the stalk to the
ground.

« For areasonable stalk length, the discharge time can be estimated of the order of 100’s
ps and this sets the upper limit of the laser pulse duration that is prone to produce
intense EMPs.

* It also explains why the problem of EMP emission is of particular importance for ps and
sub-ps pulses and why it has attracted less interest in_experiments with longer, ns

pulses.

* Nevertheless, since EMP fields scale with both laser intensity and energy, they are still
very serious and well-known threats for nanosecond high-energy and high intensity
facilities.



Mechanisms of electromagnetic emission

 Emissions that are produced during the electron ejection process: during and after the
laser pulse on the characteristic time of electron cooling, which is about a few ps —»

frequencies up to THz domain
» Generally speaking: two principal sources of EMP emission:

* ejected electrons —» up to THz
* neutralization current through the target stalk - up to 100 GHz
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Terahertz emission

* ps or sub-ps laser pulses — the ejected electron bunch has millimetrical length

 THz in experiments observed with maximum in the plane perpendicular to the direction
of electron emission — sheath dipolar emission

» Dipole emission produced during the electron ejection time, proportional to the second
derivative of the dipolar moment D, significative only during the electron ejection time

Mo | s Zo
Larmor Formula Pgp = —|D|2 ETHz = Q?
67mc Ot

« Coherent process: total energy proportional to the square of electron charge, inversely
proportional to the electron ejection time. Most important for the sub-ps lasers.

* Not of primary concern for electronic damage. Many possible applications.
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Gigahertz emission

» Relaxation of the charge accumulated on the target during Toget
the laser pulse interaction @ gi b
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Gigahertz emission — other mechanisms

* Deposition/secondary emission of particles on surfaces
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Gigahertz emission — other mechanisms

* Deposition/secondary emission of particles on surfaces
target

« Transient charged layers due to photoionization
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Gigahertz emission — other mechanisms

* Deposition/secondary emission of particles on surfaces

target

« Transient charged layers due to photoionization

* Quasi-static electric wakefields from charges accelerated
by laser—matter interaction
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Gigahertz emission — other mechanisms

* Deposition/secondary emission of particles on surfaces

target

« Transient charged layers due to photoionization

* Quasi-static electric wakefields from charges accelerated
by laser—matter interaction
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Gigahertz emission — mechanisms comparison

 As a result, EMP fields can have dependance not monotonically decreasing with
radius and be very high also far from the interaction point
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field source distribution decreasing from max fields  duration range
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photoionization exposed to exposed

UV-X~y surfaces
wakefields of close to the charged particle ~MVm~"  10sns 100s GHz
accelerated charges charged particle heams and

beams target

particles on surfaces closetosurfaces,  exposed surfaces MV m™' 10s ns approximately
even far from and target 10s MHz to GHz
the target
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Gigahertz emission — mechanisms comparison

 As a result, EMP fields can have dependance not monotonically decreasing with
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EMP distribution

Experimental chamber: electromagnetic resonator with several

much longher than the neutralization current

Electromagnetic modal expansion, with  solenoidal
eigenvectors, harmonic and irrotational electric and magnetic

eigenvectors. +00 M1 +00
° E=Y AE+ Y AE'+) Bs;.
i=1 i=I i=l

+00 P—1 +00
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Both time-domain and frequency-domain measurements and
numerical simulations needed for the EMP field description

Amplitude [a.u.]

sources: duration
o PALS T
¥ ¥ 4 —*
034 % E" S Scope
0.2 e
0.14
‘ﬂ"l' sdiy

0.0 t s g N -

0.1 1 10

ABC

P laser

Ca)

Chamber

Ra

SG-II-U

Ra\

_b)

vﬁ‘_.

F. Consoli et al, High Pow. Laser Sci.& Engin. 8, e22, 2020

F. Consoli et al. Physics Procedia, 62, 11 (2015).

Frequency
=}

(=]
o
%]
(4]

0

Frequency [GHz]

Vulcan
(b) 365 J

0.2
0 50 100 150

0.1
0.08
0.06
0.04 ——

100 200 300 400 500 600 700
Time (ns)




EMP distribution

The modal structure of the electromagnetic fields is also modified by hot electrons
and plasma expanding from the target.

They move and fill the experimental chamber, influencing the space and time
characteristics of transmitted and reflected electromagnetic waves.

They may reflect EMP waves with wavelengths longer than the critical wavelength
associated with the electron density.

Thus, within the experimental chamber, a time-varying volumetric distribution of
critical regions may be created for each EMP wavelength.

Detailed analysis requires extended numerical simulations.

Reflected‘
EMP ™.

v electrons

J. Krasa, F. Consoli, et al PPCF 62, 025021 (2020)
F. Consoli et al Phil. Trans. R. Soc. A 379, 20200022 (2020)



EMP distribution

« Several ‘doors’ lead to the transfer of the EMPs present within the chamber to the
outside: dielectric glass windows, vacuum flanges, dialectric vacuum feedthroughs
for coaxial cables...

« EMP also propagate upstream along the tubes of laser guide and may affect the beam
pointing and compression

« Study at ELI-Beamlines on EMP tube propagation with ANSYS modeler
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Methods of EMP diagnostics

« Challenges of measuring EMP fields in laser—matter interaction experiments
« Many possible spourious effects on the field measurement and determination

Functional scheme of contributions for the stored signal in EMP
measurements.
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- | Link: Ji(t) i -

t t
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s, EMP signal, s; signal actually stored in the oscilloscope

53(t) =852(t) +n1(t) +n2(t) +n3(@) + na(2) Antennas

= h1L(t) ® [s0(t) + no(t)] + next(1), DISCONNECTED o9
to the scope

Next(1) = n1(t) +na(t) +n3(t) +na(r)

* Ny noise on the detector because of ionizing radiation

* n;: EMP noise penetrating the whole transmission link

* ng direct coupling of EMP fields with the scope

* n, noise on the scope due to currents flowing on the
outer conductor of the cables
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F. Consoli et al, PPCF 2018
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Methods of EMP diagnostics

Coonductive Probes

 B-Dot, Moebious loops, for magnetic fields

» D-Dot for electric field

« Calibrated loops for neutralization current

« Antennas
 Main issue: information on EMPs Is in terms of
electrical current, in environments heavily affected by
lonizing radiation — difficult measurements
- Sensitive to the time derivative of fields: low noise amplified
in signal riconstruction Bi_fg)%r$nfileC
 Problems of electromagnetic coupling to the conductors
nearby

Loops for current - PALS

Wideband omnidirectional and

B-DOT - PETAL
; monopolar antennas - ABC

27 o v—




Methods of EMP diagnostics
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Methods of EMP mitigation: target A
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Methods of EMP mitigation: holder

« Shape and material of the holder may reduce the EMP emission of a large extent
High resistivity and specific impedance of the stalk can have notable results

- Spiral plastic stalks got a reduction of a factor of 5 on the EMP intensity

« Conductive spiral holders may also reduce EMPs of about a factor of 2

« Levitating targets reduced EMPs of ~ a factor of 25, experiments on ps laser pulses
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P. Bradford et al, High Power Laser Science & Engin. 2018; F. Consoli et al, High Power Laser Science & Engin. 2020; D.F.G. Minnenna,
Phys. Plasmas 27, 063102 (2020); C. J. Price, Rev. Sci. Instrum. 86, 033502 (2015).




Methods of EMP mitigation: holder

« Advanced holder: resistive capillary and magnetic material
* Reduce the discharge current intensity and EMP amplitude
* Guide the target charge to the ground through the holder

 Experiments at LULI (80 J/1.3 ps) about a factor of 3 reduction with respect to
conductive holder

 Experiments at PETAL confirmed the LULI results (a) s :
ol Vertical Polarization

PETAL

LULI =25} Conducting
2500 — conducting holder E
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o 15t
1500 b=
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Z 1000 ol rstive holdef |
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M. Bardon et al, Phy. Rev. Reses. 2, 033502 (2020)



Methods of EMP mitigation: joint nano+pico

 Recent experiments with both LMJ and PETAL showed very high EMP reduction (~5)

 Explained by PETAL target screening in the low density plasma created by the X-ray
emission from the LMJ target in the residual gas around the PETAL target

« Effect depending on delays between LMJ and PETAL: observed for <20ns delays
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Methods of EMP mitigation: target caging

« EMP fields confined within a Faraday cage built around the target: «birdhouse».
« The intense current must be dissipated by the target holder
 Experiments at IPPLM (330 mJ, 50 fs)
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Methods of EMP mitigation: EMP absorption

« Study at ELI-Beamlines on EMP tube propagation with ANSYS modeler

« The use of suitable radiofrequency-microwave absorbers can reduce the field
propagation of more than a factor of 1000

a) Beam Transport Manifold

P2 TME/ AHO
TME
/ AHO

P1

P4 430kV/m

P3 Interaction
Chamber / AHO

PRSRR 1e, 7

TME/ AHO EL - 2kJ, Nempe = 1%
tcaic =1 ps, At =50ps

T=75ns

TME
/ AHO

P3

Table 4. EMP energy flow at the selected ports during 1 s calculation in percentage of initial EMP energy for different absorbers. See text
for explanation of abbreviations.

Port P1 P2 P3 P4 P2-BR
IChAux IChLA4 LDiag L4 compr BackRef
No Abs 16.8 48.1 6.6 2.06 20.3
TME 15.6 50.9 0.16 0.034 2.7
P3ICh 0.45 0.42 0.071 0.025 0.28
Both 0.47 0.45 0.002 0.001 0.066

F. Consoli et al, High Pow. Laser Sci.& Engin. 8, e22, 2020



Methods of EMP mitigation: EMC optimization

 Source comphrehension may allow for optimized EMC techniques for device and
diagnostics survival and correct operation and for personnel security.
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Methods of EMP mitigation: EMC optimization

Source comphrehension may allow for optimized EMC techniques for device and

diagnostics survival and correct operation and for personnel security.
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Methods of EMP mitigation: EMC optimization

Source comphrehension may allow for optimized EMC techniques for device and
diagnostics survival and correct operationﬁand for personnel security.
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Methods of EMP mitigation: EMC optimization
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Laser-generated electromagnetic fields

* Research activity on laser-generated electromagnetic fields is mainly for

« Minimization and prevention of these intense fields
» Applications
« Strong transient magnetic fields (kT order and beyond)
* Proton acceleration by tailored traveling waves
» Source of THz radiation of unmatched features and intensity

Pre-seeded ™ -y
LOOp < g R magnetic .4 e
?? E field ~_ ’
| ) ) \, / | mult-mm =
Straight wire _| |
sections - - ~
Ultra-int .
/@ ultr;a-éaggse B,
/ laser pulses

REAR FRONT

J. Santos et al. New J. Phys. 17, 083051 (2015)
S. Fujioka et al. Sci. Rep. 3, 1170 (2013)
P Bradford et al PPCF 63 084008 (2021);

M. Murakami et al Sci Rep 10, 16653 (2020).
S. Kar et al. Nat. Commun. 7, 10792 (2016).




EMP Applications

The understanding of the further sources of EMPs may extend the number of potential
applications: material science, avionics, aerospace, electronics, medical and biological
studies, electromagnetic compatibility (EMC), sensing.

The technology can be also easily integrated in advanced schemes for particle
acceleration, for particle-beam manipulation of unmatched quality, by laser and not.

ENEA has proposed schemes for laser-generation of EM fields. ENEA Patent « A

method of generating high-intensity electromagnetic fields » PCT/IB2020/057464,
W02021/024226.




Laserlab
Europe

EMP growing community W

« A growing international community has been set up on the topic
of radiofrequency-microwave field generation

 Laserlab-Europe AISBL, an Interest/Expert group has been
created on «lLaser-generated electromagnetic pulses»,
coordinated by ENEA (F. Consoli), with more than 20 Institutions.

m F. Consoli et al, High Power Laser Science & Engin. 2020
F. Consoli et al, Phil. Trans. R. Soc. A 2020



EMP growing community

Laserlab
Europe

« A growing international community has been set up on the topic
of radiofrequency-microwave field generation

HIGH POWER

« Laserlab-Europe AISBL, an Interest/Expert group has been LASER sSEnce anp

created on «Laser-generated electromagnetic pulses»,
coordinated by ENEA (F. Consoli), with more than 20 Institutions.

* Review paper with contributions of the main laboratories on High
Power Laser Science and Engineering, selected for the volume
cover, got the Editor-in-Chief Choice Award 2020, and the
Excellent Article for the 10" Anniversary of HPLSE Journal
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Conclusions

Laser-matter interaction of high energy and intensity produce remarkable transient
electromagnetic pulses, which presents a threat for electronics and personnel and
have to be mitigated.

Picosecond and sub-ps laser pulses charge the targets to a few pC and excite strong
broadband electromagnetic emissions with amplitude up to the MV/m order.

Recognized major source of emission in the GHz domain is the neutralization current
flowing through the target holder generating.

Other sources of EMP are identified, but further characterization is needed.

Minimization is possible, and it considers both source suppression and EMC
optimized techniques.

A large number of further promising applications can be enabled by a full
comprehension of the physics of EMP generation, of the mechanisms of their
operation, and by a suitable characterization of EMP fields.

ENEN
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Gigahertz emission

« Why the ps laser pulses are much stronger emitters in the GHz domain, compared to
the ns pulses? — fs-ps pulses accumulate a big charge for a short period of time and
discharge it in a short and intense current pulse

* NS pulses

» potential is established by a balance between the rate of electron ejection and the
amplitude of the return current through the stalk to the ground.

* relatively weak continuous current induced - much weaker emission.

* nevertheless, remarkable and very dangerous values of EMPs are observed for
nanosecond high-energy and high intensity facilities.
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« The EMP signal can be significantly enhanced if along and a short laser pulses interact

with the same target. . . _ o
F. Consoli et al, High Power Laser Science and Engineering 8, €22 (2020)
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