Laser-driven Ion Acceleration and Applications

Daniele Margarone

Director of Research and Operations ELI Beamlines, Czech Republic

HPLA, 11-12 January 2024, LNS-INFN, Catania

Ion Acceleration by Laser-Plasma

Multidisciplinary Applications of laser-based Ion Source.

The ELIMAIA-ELIMED user beamline @ ELI Beamlines

Source

Laser-Plasma Ion Acceleration

physical picture

Target Normal Sheath Acceleration 0.1-10 μm long

REVIEW PAPERS:

- Macchi, Borghesi, Passoni, Rev. Mod. Phys. 85 (2013) 751
- Borghesi et al, Springer Proc. Phys. 231 (2019) 143

Energy Gain: 100 MeV/µm (in a plasma medium)!!!

 $I_{L} (laser intensity) = E/\tau/S = 10^{21} \text{ W/cm}^{2}$ Direct Laser interaction: • E ~ I_{L}^{1/2}\lambda = 10^{14} \text{ V/m}
• B = E/c = 3x10⁵ T • P_{rad} = I_{L}/c = 3x10^{10} \text{ J/cm}^{3} = 300 \text{ Gbar}

Laser-Plasma interaction:

- Debye Length $\lambda_D = 2.4 \,\mu m \cdot \sqrt{\frac{T_{hot}}{1 MeV}} \cdot \sqrt{\frac{10^{19} \, cm^{-3}}{N_{hot}}} \implies ~ \mu m!$
- Acceleration time

$$\tau = \sqrt{\frac{\lambda_D^2 m_{ion}}{T_{hot}}} = 0.24 \, ps \sqrt{\frac{\lambda_D^2 n_{hot}}{10^{19}}} \quad \Longrightarrow \quad \mathbf{\sim ps!}$$

• Electric Field

Laser-Plasma Ion Acceleration

principal motivation

E_{max} ~ 50 MV/m

L_{acc} ~ 1-10 m

High (Peak) Power Lasers Ion Acceleration

current facilities

Ultrashort CPA systems •Ti:Sa technology •10s J energy, up to 1 PW power • ~ 1 Hz repetition rate •10s fs duration GEMINI, RAL (UK) • I_{max}~ 10²¹ Wcm² Draco, HZDR (De) Pulser I, APRI (Kr) J-Karen, JAEA (J) HAPLS-L3, (ELI Beamlines) **1 PW** (30J/30fs/**10Hz**) E_{max}~ 70-80 MeV

Maximum Proton Energy

experimental scaling laws (TNSA)

Ion Beam Properties TNSA regime

- ✓ Short duration @ source: bursts with duration ~ ps (acceleration time ~ laser pulse width)
- **Highly laminar source**: $ε_N < 0.1 π$ mm.mrad (virtual point source: ~ μm << real source)
- ✓ **Broad spectrum**: continuum up to cutoff energy (lower divergence for higher energies)

Laser-driven Ion Acceleration Mechanisms

laser intensity vs. target density

Courtesy of S.S. Bulanov

Target Engineering

enhanced TNSA beam properties

Target Engineering

enhanced HB-RPA beam properties

Cryogenic solid-H for enhanced Hole-Boring Radiation-Pressure-Acceleration

> Ion Acceleration by Laser-Plasma

Multidisciplinary Applications of laser-based Ion Source.

> The ELIMAIA-ELIMED user beamline @ ELI Beamlines

Current Applications

unique ion beam features

Prospective Applications

unique ion beam features

Fast Ignition (Inertial Confinement Fusion)

7-19 MeV 10¹⁶ protons 2-4 GeV 10¹⁴ carbon ions

Particle therapy of cancer (hadrontherapy)

60-250 MeV protons

2-4 GeV carbon ions

Typical dose fraction: 2-5 Gy

1 Gy $\sim 10^{10}$ p+, $\sim \! 10^9$ C

Proton Radiography/Deflectometry

a powerful plasma probing tool

Laser-based Hadrontherapy

potential advantages

Reduced cost/shielding

- Laser transport rather than ion transport (vast reduction in radiation shielding)
- Reduced size of gantry (?)

Flexibility/modularity

- Controlling output energy and spectrum
- Possibility of varying accelerated species
- Spectral shaping for direct "painting" of tumor region (no degrader needed)

Novel therapeutic/diagnostic options

- Mixed fields: ions, X-rays, electrons, neutrons
- In-situ diagnosis (PET, X-rays)

Radiobiological advantages

- Short pulse radiation might reduce damage to healthy tissues ("flash" effect)
- Increase in RBE (relative biological effectiveness) of tumor cells (?)

Conventional hadrontherapy (C-ions)

https://www.ptcog.ch/images/ptcog58/Scientific/0930_Debus.pdf

Laser based hadrontherapy (concept)

Radiobiology ultra-fast regime

Radiation physics Radiation			on chemistry		Radiation biology		
10-15	10-12	10 ⁻⁹	10-6	10-3	1	10 ³	10 ⁶
sec	sec	sec	sec	sec	sec	sec	sec
 Ionization •Radical Excitation formation Dielectric relaxations 		•DNA damage formation		•Repair •Replication •Cell death •Somatic mutations			
					•Cancer •Heritable		

Remarks

- ✓ Laser-driven ions are emitted at the source within a time ∆T~ ps resulting in dose deposition at the sample in 100s ps ns pulses
- Peak dose rates > 10⁹ Gy/s can be achieved (compared with Gy/min average dose rates used in radiotherapy)

Possible effects proposed in the literature

mutations

- Spatio-temporal overlap of independent tracks causing collective effects and enhancing LET (hence RBE) in cancer cells
- Local depletion of oxygen causing a reduction in cell radiosensitivity of healthy tissues (FLASH radiotherapy)

Radiobiology

pre-clinical studies on cancer cells

Zeil et al, Appl. Phys. B (2013)

Recent results with C-ions (courtesy of M. Borghesi)

0.5 h

Carbon: LET~ 200 KeV/µm Proton: LET~ 5 KeV/µm

carbon proton 24 h

Doria et al, AIP Adv. (2012)

COMMENTARY

flash dose rates > 10^3 Gy/s

Faster and safer? FLASH ultra-high dose rate in radiotherapy

¹MARCO DURANTE, PhD, ²ELKE BRÄUER-KRISCH, PhD and ³MARK HILL, PhD

¹National laboratories, Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), University of Trento, Trento, Italy

²National laboratories, ESRF-The European Synchrotron, Grenoble, France

³Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK

Outline

> Ion Acceleration by Laser-Plasma

Multidisciplinary Applications of laser-based Ion Sources

The ELIMAIA-ELIMED user beamline @ ELI Beamlines

ELI Beamlines Dolní Břežany, Czechia

Start Contraction rests

State Jal

the <u>High-Energy Beam</u> Pillar of the Extreme Light Infrastructure

ELI Beamlines mission profile

- Operate cutting edge, high-peak power femtosecond laser systems with high energy, high repetition-rate capability
- Explore interaction of light with matter (plasma) at **ultrahigh laser intensities**
- Offer secondary sources (X-rays and accelerated particles) with unique capabilities to users
- Enable pioneering research not only in plasma physics, high-field physics, nuclear fusion and laboratory astrophysics, but also in material science, biology, chemistry, medicine and other disciplines with strong multidisciplinary application potential

ELI Beamlines

ELI BL Facility Status (Dec 2023)

user operations, commissioning, development

L1-E1 user operation (call1,2,3)
L3-P3/ELIMAIA user operation (call2)
L3-ELBA/ELIMED commissioning (call3)
L4n-P3 user operations (call2,3)
L3-Gammatron to be commissioned
L2-LUIS R&D

ELIMAIA-ELIMED Laser-Plasma Ion Accelerator (E4)

ELI Multidisciplinary Applications of laser-Ion Acceleration (1 Hz)

Call-2 experiment with L3-ELIMAIA

"Compact, high-rep dose delivery system employing helical coil targets", S. Kar (QUB, UK)

selected at the output of ELIMED (~10m)

• high repetition rate basis using a tape drive target tested (L3, 0.5 Hz)

Conclusive Remarks

Physics!

a few hints to implement and <u>operate</u> a high-power laser-based facility

- Robust expertise and experience
 - \checkmark engineering support \bigcirc
 - \checkmark installation and operation of large equipment \bigcirc
 - \checkmark operation, fine tuning (daily), and trouble shooting of high-power (fs) lasers \bigotimes
 - ✓ knowledge and know-how in Plasma, Laser-Plasma, Diagnostics, Targetry, applications
 ☺
- > Substantial investment and human resources \rightarrow ~ 50 (200/4) !!!
 - \checkmark senior + junior <u>laser</u> scientists and laser operators \bigotimes
 - ✓ senior + junior <u>laser-plasma</u> (relativistic) interaction scientists (overcritical, undercritical) ⊗
 - \checkmark specialists in diagnostics of secondary sources \bigcirc
- Education and Training
 - ✓ PhD students
 - ✓ undergraduate students