INFN Rome 2 ATLAS Meeting Group

Daniele Truncali

Sezione di Roma Tor Vergata

21/12/2023

Aula Grassano

My education

Thesis title: Test of the electromagnetic calorimeter of the SAND detector for the DUNE long baseline neutrino experiment at LBNF

Advisors: Proff. Antonio Di Domenico, Paolo Gauzzi *Content*: This experiment, which will take place at FermiLab, aims to conduct precise studies in ν physics and search for CP violation in the ν sector.

Specifically, my research focused on the **ECAL** of the **SAND Near Detector** and involved studying the optimization of the working point of the readout channels for v interactions.

I conducted investigations using both **MC simulations** and **experimental tests** at LNF. The outcome of this work is crucial in determining the final front-end electronics for the SAND calorimeter.

MC simulation results

10² 10² 10² 10⁴ 10

80

100

120

140

pe number

160

60

E_{ν} range = [0,10]	GeV
Events number	$101,\!696$
Events cells number	2,184,901

events count

20

Fraction of events with at least one cell above PE threshold [9]	6]
1000 PE threshold 2.	58
2000 PE threshold 0.	49
3000 PE threshold 0.	13
4000 PE threshold 3.64 ·	10^{-2}

Total PE number distribution at E, fixed, 2000 pe cut

New Hamamatsu PMT (up) and reference PMT (down)

My experience

Topic of my PhD experience

The aim of my PhD project will be the data analysis of the top quark decay for the ATLAS experiment, with a focus on the CP violation measurements in the B originating from the top quark.

The process of interest involves the **semileptonic decay of the b quarks into muons** — Application for the ATLAS Software Development Grant on the **muon validation project** (one of the references is Marco Vanadia)

1st year schedule of the PhD

Participation to the ATLAS week (12 – 16 February 2024);

- Definition of qualification task:
 - Phenomenology of top decays;
- PhD courses starting on March April:
 - Machine Learning for Physics (held by Michele Buzzicotti);
 - Introduction to Unix and ROOT (held by Marco Vanadia);
- Physics Master course:
 - Statistical Data Analysis (held by prof. Umberto De Sanctis).

THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES

DUNE scheme

Near Detector

The **ND** system consists of **3 subdetectors**, two of which will be **movable** while the other one will be **fixed**:

- ArgonCube (ND-Lar);
- Multi-Purpose Detector MPD (ND-Gar);
- System for on-Axis Neutrino Detection SAND

The ND is used to **measure the beam flux** prior to oscillation and **reduce systematic uncertainties** originating from v energy reconstruction.

MC neutrino energy spectrum

Neutrino energy spectrum

PMT dynamic range

5.5

8.3

10

1.38

2.1

2.5

 ~ 1500

 ~ 1000

 ~ 800

1.16

1.74

2.18

 ~ 4

 ~ 3

 ~ 2

4.0

3.0

2.0

Some FEE constraints:

- Minimum discriminator threshold
 V_{TH} = 5 mV;
- Preamplifier linearity range = [0, 4.7] V;
- V_{dis} = $0.5 \cdot V_{preamp}(max) \cdot C_{att} = 1.74 V$
- ► G_{tot} = G_{PM} G_{preamp}
- (Npe G_{PM})(max) = 83 · 10⁷

PMT signal stretching

