Report sull'attività di analisi nella fisica del flavour

Fabiola Raffaeli, Umberto De Sanctis

INFN ATLAS EXPERIMENT

Theoretical overview: B^0 and B^0_s Branching Ratios

- The b quark belongs to the quarks' third generation: the $b \rightarrow t$ transition is kinematically forbidden, so the b quark decays in a quark of different generation via FC processes through the CKM matrix.
- In SM B^0 and B^0_s Branching Ratios are precisely predicted $\mathcal{B}(B^0_s \to \mu^+ \mu^-)_{SM} = (3.66 \pm 0.14) \times 10^{-9}$, $\mathcal{B}(B^0 \to \mu^+ \mu^-)_{SM} = (1.03 \pm 0.05) \times 10^{-9}$ [Phys. Rev. Lett. 112 (2014) 101801]
 - Small but precisely known \rightarrow can have significant contributions from new physics scenarios.
- In the SM the branching fraction of the decays $B_s^0 \rightarrow \mu^+ \mu^-$ is very small, due to three main reasons
 - 1. FCNC suppression;
 - 2. Helicity suppression;
 - 3. CKM suppression (V_{td} and V_{ts}).

Lifetime measurement

- In addition to the BR measurement, also the $B_s^0 \rightarrow \mu^+ \mu^-$ effective* lifetime is sensitive to New Physics in a complementary way
- It allows to disentangle the contributions from the two states of the $B_s^0 B_s^0$ system;
- Open to different CP structure with respect to the SM ightarrow in SM only CP-odd (heavy state) can decay to di-muon pair.
- The effective lifetime measurement is sensitive to New Physics contributions and it's a complementary probe to the BR measurement

$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}^{0}}}{1 - y_{s}^{2}} \left(\frac{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right)$$

holds, where

a)
$$\tau_{B_s^0} = 1.510 \pm 0.005 \ ps$$
 is the B_s^0 mean lifetime;
b) $y_s = \frac{\tau_{B_s^0} \Delta \Gamma}{2}$;

- c) $\Delta\Gamma$ is the difference between light and heavy mass eigenstates decay width.
- $A \in [-1; 1] \rightarrow \text{in SM only } A = +1 \text{ (CP-odd)} \rightarrow \tau_{\mu\mu}^{SM} = (1.624 \pm 0.009) \text{ps} \text{ [Phys. Rev. D 107 (2023) 052008]}$

 $L_{xy}m_B^{PDG}$

transverse plane.

BR and lifetime analysis

 \blacktriangleright Analysis strategy: Two muons with p_T above 4 and 6 GeV (di-muon trigger with these thresholds);

Hadronisation probabilities

B^0 and B_s^0 Branching Ratios: experimental results

1) ATLAS $\mathcal{B}(B_s^0 \to \mu^+\mu^-) = (2.69^{+0.37}_{-0.35}) \times 10^{-9} \mathcal{B}(B^0 \to \mu^+\mu^-) < 1.9 \times 10^{-10} \text{ at } 95\% \text{ CL};$

 $\mathcal{L}(7 \text{ TeV}) = 5fb^{-1}, \mathcal{L}(8 \text{ TeV}) = 20fb^{-1}, \mathcal{L}(13 \text{ TeV}) = 26.6fb^{-1};$

- **2)CMS** $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = [2.9^{+0.7}_{-0.6} \text{ (exp)} \pm 0.2 \text{ (frag)}] \times 10^{-9} \mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.6 \times 10^{-10} \text{ at } 95\% \text{ CL}$ $\mathcal{FL}(7 \text{ TeV})=5fb^{-1}, \mathcal{L}(8 \text{ TeV})=20fb^{-1}, \mathcal{L}(13 \text{ TeV})=36fb^{-1};$
- **3)LHCb** $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \quad \mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} \text{ at 95\% CL}$ $\mathcal{L}=4.4 f b^{-1}$.

The combination of results from the three experiments using 2011-2016 data gives

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.69^{+0.37}_{-0.35}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.6(1.9) \times 10^{-10} \text{ at } 90\%(95\%) \text{ CL}$

ATL-CONF-2020-049

 $\simeq 2\sigma$ «tension» with the SM

$B_s^0 \rightarrow \mu^+ \mu^-$ lifetime: BDT cut optimisation and event selection

• Event selection:

<u>JHEP 04 (2019) 098</u>

JHEP09(2023)199

- Two muons with p_T above 4 and 6 GeV (di-muon trigger with these thresholds);
- $m_{J/\psi} = [2915,3275] \text{MeV} (B^{\pm} analysis), p_T^B > 8.0 \text{ GeV};$
- Reconstructed B^+ mass in range [4930,5630]MeV;
- Reconstructed B_s^0 mass in range [4766,5966] MeV.
- •Small S/B ratio \rightarrow BDT cut applied;
 - A Boosted Decision Tree is a binary decision tool. It combines information from 15 physical input variables to obtain the signal-to-background discriminator
 - ✤B meson variables;
 - Muons variables;
 - Variables related to the rest of the event.

BDT optimisation for lifetime analysis

JHEP04(2019)098

- The **goal of this optimisation** is to find the best S/B configuration to measure the lifetime → the optimal BDT cut has been searched to discriminate signal with respect to the continuum background.
- The **significance** has been defined as A=S/V(S+B), where S and B are the numbers of MC signal and MC background events.
- The **max A value** has been searched in different S and B configurations.
- Sidebands data have been used to normalize the MC background into the signal region.
- The signal MC normalization obtained in the signal region 5166-5526 MeV, using the expected number of B_s^0 events, assuming the SM BR.

Best BDT cut found at 0.3650 \rightarrow **S=49**, **B=27** expected in the signal region.

Functions for background interpolation: Chebychev + exponential.

$B_s^0 \rightarrow \mu^+ \mu^-$ lifetime: general strategy

- 1. Di-muon invariant mass fit on data, with models from BR analysis, to extract the number of candidates.
 - 1. Continuum background (uncorrelated hadrons decays);
 - 2. Partially reconstructed decays (one or more final state particles are missing);
 - 3. Peaking background (~ 4% under the mass peak, both final state hadrons misidentified as muons)
- 2. Use **sPlot** [*sPlot: a statistical tool to unfold data distributions*] to extract signal proper decay time distribution from data.
 - The sPlot technique allows to estimate the distribution of a control variable using the known distribution of a discriminating variable.
 - The pseudo proper time $t = (L_{xy}m_B^{PDG})/|\overrightarrow{p_B}| \rightarrow \text{minimal correlation}$ between mass and proper time.
- 3. Compare the signal proper time distribution with the MC templates to extract the lifetime.
 - χ^2 minimization used to find the best template.

F. RAFFAELI, 21/12/2023

$B_s^0 \rightarrow \mu^+ \mu^-$ lifetime: Results

$B_s^0 \rightarrow \mu^+ \mu^-$ lifetime: Systematic uncertainties

Uncertainty source	$\Delta \tau^{\rm Obs}_{\mu\mu}$ [fs]
Data - MC discrepancies	134
SSSV lifetime model	60
Combinatorial lifetime model	56
B kinematic reweighting	55
<i>B</i> isolation reweighting	32
SSSV mass model	22
B_d background	16
Fit bias lifetime dependency and B_s^0 eigenstates admixture	15
Combinatorial mass model	14
Pileup reweighting	13
B_c background	10
Muon Δ_{η} correction	6
$B \rightarrow hh'$ background	3
Muon reconstruction SF reweighting	2
Semileptonic background	2
Trigger reweighting	1
Total	174

Systematic uncertainties studies:

- Fit procedure related
 - Includes intrinsic fit bias and signal/background modelization
- Signal modeling
 - Data/MC discrepancies estimated using data-driven approach using $B^{\pm} \rightarrow J/\psi K^{\pm}$ control channel \rightarrow is used to test the fitter procedure and the lifetime extraction with respect to a well known channel
- Background contributions
 - Add/remove neglected components

Total systematic uncertainty **0.17 ps**

Detector modelization $B^{\pm} \rightarrow J/\psi K_{\frac{1}{2}}^{\pm}$

- For this measurement, an important role is played by the vertex position resolution
 - A good proxy is given by $\sigma_{L_{XY}}$, i.e. the resolution on $L_{XY} \rightarrow \text{Idea}$ is to check its modelling using data from the control channel
- The lifetime extraction procedure in B^{\pm} data is made of 5 steps.
- 1. In each $\sigma_{L_{XY}}$ bin an UEML fit is performed on the **full statistics**
 - Fit model as in slide 7;
 - sPlot used to extract the signal proper-decay time distribution
 - Fit to proper-decay time distribution to extract shape parameters to be used in the Toy MC generation
- 2. In each $\sigma_{L_{xy}}$ bin an UEML fit is performed on 200 sub-samples (~80 events) of independently bootstrapped events
 - Shape parameters taken from the Step 1 act as gaussian constraints
 - Lifetime is extracted for each of the 200 sub-samples using the same strategy as for the B_s signal
 - Average lifetime and its uncertainty reported for each bin (blue points)

Detector modelization $B^{\pm} \rightarrow J/\psi K^{\pm}$

- 3. In each $\sigma_{L_{xy}}$ bin an UEML invariant mass fit is performed on 1000 toys MC of ~ 80 events each
 - Correct for the intrinsic bias of the procedure (same as for the Bs case)
 - Same procedure as in Step 2 to extract the average lifetime and its uncert. in each bin (red points)
- 4. In each $\sigma_{L_{xy}}$ bin , the average lifetime obtained from MC toys is subtracted from that obtained with bootstraps \rightarrow linear fit on this distribution
- 5. Weighted average of the lifetime bias using the $\sigma_{L_{xy}}$ distribution of the B_s channel

$B_s^0 \rightarrow \mu^+ \mu^-$ lifetime: final result

- Horizontal bars represent the statistical and systematic uncertainties;
- Published combination [ATLAS-CONF-2020-049] on 2011-2016 data by CMS and LHCb collaborations is reported with the total uncertainty;
- The SM prediction and its uncertainty $\tau_{\mu\mu}^{SM} = (1.624 \pm 0.009) \text{ps} [Phys. Rev. D 107 (2023) 052008]$ are represented by the vertical line and its thickness, respectively;
- The result obtained is consistent with the SM prediction as well as other available experimental results.

Conclusions and outlooks

- B_s^0 effective lifetime has been measured for first time in ATLAS using pp data collected in 2015 and 2016
 - 1. Fit to di-muon invariant mass distribution;
 - 2. Used sPlot to extract the signal proper time distribution;
 - 3. Compared the signal proper time distribution with MC templates to extract the $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime.
- The result [JHEP09(2023)199] obtained based on a fraction of Run2 dataset corresponding to 26.3 fb⁻¹ of 13 TeV LHC pp collisions is

$$\tau_{\mu\mu}^{OBS} = 0.99^{+0.42}_{-0.07} (stat.) \pm 0.17 (syst)$$

- The value obtained is consistent with the SM prediction $\tau_{\mu\mu}^{SM} = (1.624 \pm 0.009)$ ps and with other available experimental results.
- We are moving towards complete Run 2 dataset analysis.
 - Studies on muons fake rates;
 - Studies on B^{\pm} fit;
 - Studies related to BDT variables.

Outlooks: Fake Rates studies

- B^0 and B_s hadrons decaying into a pair of hadrons (essentially kaons and pions).
- The goal is to study **in data** how many kaons have been misidentified as muons and produce Scale Factors in bins of η and p_T of the muon to correct MC.
- $B^{\pm} \rightarrow J/\psi K^{\pm}$ events have been chosen to study the muons' fake rate.
 - 1. First, an Unbinned Extended ML fit to B^{\pm} candidate invariant mass distribution is performed to obtain the number of B^{\pm} signal events
 - 2. Fake rates computed as function of p_T and η bins of ID track of the muon matching the kaon in the three Working Points (Loose, Medium and Tight).

Bin 3 4 GeV $< p_T \le 5$ GeV

MC simulation looks in agreement with data within the uncertainty of the estimate (i.e. 20-40%)

[Me\