

SENSEI[†] update on single-electron events

A. M. Botti* for the SENSEI[†] collaboration EXCESS Workshop @ IDM, Rome July 6, 2024

Image: SENSEI sensor

* Fermi National Accelerator Laboratory · abotti@fnal.gov

† Sub-Electron-Noise Skipper-CCD Experimental Instrument · https://sensei-skipper.github.io

The Oensei Collaboration

Example images (real data!)

Traditional CCD

Skipper- CCD

Background sources: environment

High-energy:

- \cdot Air shower muons
- · Nuclear decay neutrons
- · x/ɣ-rays

Low-energy:

- · IR photons
- · Halo and transfer inefficiency
- \cdot Compton scattering
- \cdot Charge collection inefficiency

Shielding and quality cuts to remove environmental background.

The SENSEI Collaboration - Phys. Rev. Lett. 125, 171802 (2020)

Background sources: detector

Exposure independent

- \cdot Spurious charge (10⁻² to 10⁻⁵ e⁻/pix/image)
- Amplifier light (10⁻¹ to 10⁻⁵ e-/pix/day)

Exposure dependent

 \cdot Dark current (10⁻⁵ e⁻/pix/day at 135 K)

Single electron rate reduced by optimizing operation parameters

- · Read-out mode: continuous vs expose
- · Voltage configuration
- · Amplifier off while exposure
- · Temperature control

The SENSEI Collaboration. Phys. Rev. Applied 17, 014022 (2022)

The Oensei Experiment

	'17	'18	'19	'20	'21-'23	Ongoing
	Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning (12g) at SNOLAB (6000 m.w.e.) + 1st	2nd commissioning (40g) + science run
5 180	4000 samples				science run	
₩ 160 140						
120 100 80	Ţ.					
60 40						
20 0-1	0 1 2 3	4 charge [e]				
	Tiffenberg, Javier, et al. Physical Review Letters 119 13 (2017): 131802					

Fermilab Orensei

The Orensei Experiment

'17	'17 '18		'20	'21-'23	Ongoing	
Demonstrate sub-electron resolution	Demonstrate sub-electron resolution DM search with proto-SENSEI (0.1 g) at surface		DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning (12g) at SNOLAB (6000 m.w.e.) + 1st science run	2nd commissioning (40g) + science run	
A CONTRACT OF A	2cm	lcm	The SENSEI Collabo Physical Review Lett	ration ers 121.6 (2018): 061803.		
	• readout stages 200 um thick 0.1 gram mass		The SENSEI Collabor Physical review lette	ration rrs 122.16 (2019): 161801.		

Fermilab Orensei

The Oensei Experiment

'17	'18	'19	'20	'21-'23	Ongoing
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning (12g) at SNOLAB (6000 m.w.e.) + 1st science run	2nd commissioning (40g) + science run
			Ċ.	arXiv:2312.13342	

SENSEI @ SNOLAB: Setup

- Cold copper box for 12 copper tray
- Each tray for 2 (4) ~2g CCDs.
- 6-in copper bricks and hat inner shield
- Vacuum pump (< 2x10^-4 mbar)
- Cryocooler + heater (~140 K)
- 2 layer of copper outer shield
- 3-in lead
- 42-inch polyethylene and water shield

SENSEI @ SNOLAB: First science run

Setup and operations:

- 6 CCDs (~13 g) designed by S. Holland @ LBNL
- 6144 × 1024 pixels
- 15 μm pitch, 675 μm thick
- Run: 9/2022-4/2023
- 20 hour exposures
- 129 images (~50% blinded)
- 7.3 hours readout, noise of ~0.14 e-
- Temperature variations of 135 K-155 K
- 1 e- density (after cuts): ~2 x 10-4 e-/pixel

The Orensei Experiment

'17	'17 '18		'19	'20	'21-'23	Ongoing		
Demonstrate sub-electron resolution		DM search with proto-SENSEI (0.1 g) at surface (230 m.w.e.)		DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning (12g) at SNOLAB (6000 m.w.e.) + 1st science run	2nd commissioning (40g) + science runs		

SENSEI @ SNOLAB: Second science run

Setup and operations:

- Dedicated run for 1e⁻ events
- 22 CCDs with new copper trays
- 101 Commissioning (unblinded) images
- 77 Hidden (blinded) images
- 0, 2, 6, 20 hour exposures
- Binned data (1superpix = 32 pix)
- ~ 14 m readout, noise of ~0.14 e-
- Temperature ~ 140 K

SENSEI @ SNOLAB: quality cuts

Blinded analysis

- 1. Choose 1 Golden quadrant
- 2. Quality cuts with commissioning data:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Hot image (3-sigma upper cut)
 - Noisy image (refit after masking)
 - Serial register events
 - Charge transfer inefficiencies
 - High-energy events halo

System / detector effects

Environmental background

3. Choose **2 Witness** quadrants to assess cryocooler effect in hidden data

SENSEI @ SNOLAB: quality cuts

Blinded analysis

- 1. Choose 1 Golden quadrant
- 2. Quality cuts with commissioning data:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Hot image (3-sigma upper cut)
 - Noisy image (refit after masking)
 - Serial register events
 - Charge transfer inefficiencies
 - High-energy events halo

System / detector effects

Environmental background

3. Choose **2 Witness** quadrants to assess cryocooler effect in hidden data

SENSEI @ SNOLAB: quality cuts

Blinded analysis

- 1. Choose 1 Golden quadrant
- 2. Quality cuts with commissioning data:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Hot image (3-sigma upper cut)
 - Noisy image (refit after masking)
 - Serial register events
 - Charge transfer inefficiencies
 - High-energy events halo

System / detector effects

Environmental background

3. Choose **2 Witness** quadrants to assess cryocooler effect in hidden data

SENSEI @ SNOLAB: 1e- density

55 hidden images selected Cut efficiencies: **(82~95)%** Hot image: **0 Golden** - 1 Witness Noisy images: **0 Golden** - 0 Witness

SENSEI @ SNOLAB: rates

- Golden quadrant: (1.4 ± 0.1) x10⁻⁵ e-/pix/day
- Witness quadrants: (2.2 ± 0.1) x10⁻⁵ e-/pix/day
- Lowest ever in Silicon (or NIR/UV photodetector)
- SENSEI original goal: 1.0 x 10⁻⁵ e-/pix/day
- Rest of quadrants are still hidden
- Significant improvement from SNOLAB 1st run
- What changed? Copper trays!

Gensei

SENSEI @ MINOS: light-leak test setup

- Same CCDs as in SNOLAB
- 1 Cold copper tray with 2 CCDs
- No cold box around tray
- 6 hs exposure with **LED on**
- No cold box around tray
- Run 1 with old tray
- Run 2 with **new tray** and extra tape
- Run with 0, 2 and 6 hs exposure
- Same operation parameters and quality cuts as in SNOLAB

Gensei

SENSEI @ MINOS: light-leak test result

- Best previous result :
 - ~8 x 10⁻⁵ e-/pix/day (not published)
- New best result:
- (3.4 ± 0.1) x 10⁻⁵ e-/pix/day
- Improvement of factor 2 with light-tight tray

Exposure-dependant rates in x 10⁻⁵ e-/pix/day

CCD-1	$\begin{vmatrix} 3.43 \pm 0.13 \\ 7.79 \pm 0.21 \end{vmatrix}$	4.27 ± 0.14 7.38 ± 0.22
CCD-2	$\begin{vmatrix} 9.04 \pm 0.27 \\ 6.47 \pm 0.19 \end{vmatrix}$	4.10 ± 0.16 7.14 ± 0.25

Summary and what's next?

- 1st dedicated 1e- rate measurement at SNOLAB: new world record of (1.4 ± 0.1) x10⁻⁵ e-/pix/day
- MINOS test support light-leak hypothesis
- Paper and data release coming soon
- New support from H-S
- New cryocooler coming.
- Unbinned measurement with different exposures to study 2, 3, 4 e- channels with improved analysis
- Strategies to further push background: different form factor, package, IR shield, etc

New device @ MINOS

- First skipper-CCD optimized for DM detection
- 5.5 Mpix of 15 µm
- 675 µm thick
- Active mass ~ 2 g
- 20 kΩ
- 4 amplifiers
- T ~ 135 K + vacuum

SENSEI @ SNOLAB: First results

Quality cuts

Cuts Ne	1		2		3		4		
1. Charge Diffusion	1.0		0.228		0.761		0.778		
	Eff.	#Ev	Eff.	#Ev	Eff.	#Ev	Eff.	$\#\mathrm{Ev}$	
2. Readout Noise	1	$> 10^{5}$	1	58547	1	327	1	155	
3. Crosstalk	0.99	$> 10^{5}$	0.99	58004	0.99	314	0.99	153	
4. Serial Register	~ 1	$> 10^{5}$	~ 1	57250	~ 1	201	~ 1	81	
5. Low-E Cluster	0.94	42284	0.94	301	0.69	35	0.69	7	
6. Edge	0.70	25585	0.90	70	0.93	8	0.93	2	
7. Bleeding Zone	0.60	11317	0.79	36	0.87	7	0.87	2	
8. Bad Pixel/Col.	0.98	10711	0.98	24	0.98	2	0.98	0	
9. Halo	0.18	1335	0.81	11	~ 1	2	~ 1	0	
10. Loose Cluster	N	/A	0.89	5	0.84	0	0.84	0	
11. Neighbor	~ 1	1329	~ 1	5	N		/A		
Total Efficiency	0.069		0.105		0.341		0.349		
Eff. Efficiency	0.069 1.38		$\begin{array}{r} 0.105 \\ 2.09 \end{array}$		$\begin{array}{c} 0.325 \\ 9.03 \end{array}$		$\begin{array}{r} 0.327 \\ 9.10 \end{array}$		
Eff. Exp. [g-day]									
Observed Events	131	$1.7^{(*)}$		5	0		(0	
90%CL [g-day] ⁻¹	525	$5.2^{(*)}$	4.449		0.255		0.253		

Example image

Masking

Summary: from prototype to science grade

Active mass ~ **0.1 g 0.019 gram-day** exposure 0.14 e- RO noise (**800** samples) SEE ~ **1.14 e-/pixel/day**

Active mass ~ **0.1 g 0.069 gram-day** exposure 0.14 e- RO noise (**800** samples) SEE ~ **0.005 e-/pix/day** Active mass ~ 2 g 19.926 gram-day exposure 0.14 e- RO noise (300 samples) SEE ~ 1.6x10⁻⁴ e-/pix/day

Background sources: detector

Exposure dependent

- Dark current (10⁻⁵ e /pix/day at 135 K)
- \cdot Amplifier light (10⁻¹ to 10⁻⁵ e⁻/pix/day)

Exposure independent

 \cdot Spurious charge (10⁻² to 10⁻⁵ e⁻/pix/image)

Single electron rate reduced by optimizing operation parameters

- · Read-out mode: continuous vs expose
- · Voltage configuration
- · Amplifier off while exposure

The SENSEI Collaboration. Phys. Rev. Applied 17, 014022 (2022)

Background sources: environment

High-energy:

- · Air shower muons
- · Nuclear decays
- · x/ɣ-rays

Low-energy:

- · IR photons
- · Halo and transfer inefficiency
- · Compton scattering
- \cdot Charge collection inefficiency

Environmental background is reduced with shielding, and removed from data with quality cuts

The SENSEI Collaboration - Phys. Rev. Lett. 125, 171802 (2020)

Background goal

