

Quantum Device Lab Michael Kerschen (26/6/2021) | 26/6/2021 | 26/6/2021 | 26/6/2021 | 26/6/2021 | 26/6/2021 | 26/6/2021 | 26/6/2021 | 26/6/2021 | 26/6/6/2021 | 26/6/2022 | 26/6/2021 | 26/6/2021 | 26/6/2021 | 26/6/2022 | 26

Quasi-Particles in Superconducting Qubits

Michael Kerschbaum, Felix Wagner, Uros Ognjanovic, Giovanni Vio, Kuno Knapp, Dante Colao Zanuz, Alexander Flasby, Andreas Wallraff, Jean-Claude Besse

06/07/2024, EXCESS24

Superconducting Circuits as a Platform for Quantum Information Processing

Quasiparticle Tunneling Causes Relaxation and Dephasing

- Electrical field (≈kV/m) in JJ interacts with QPs \rightarrow decay
- Even/odd charge parity (CP) island changes qubit energy
- **Tunneling QP switches CP** \rightarrow **dephasing**
- At T≈40 mK film electrons are paired, binding energies 2Δ ≈ meV ≈ 250 GHz
- Athermal photons/phonons can break pairs creating quasiparticles (QPs)
- QPs can tunnel through Josephson junctions (JJs)

Charge Dispersion

State-of-the-Art

Previously studied in literature:

- **Phonon bursts from high energy particles as QP sources** Nature Physics volume 18, pages 107-111 (2022)
- **EXECT** Antenna modes of the qubit island as QP sources arXiv:2103.06803 (2021) Phys. Rev. Lett. 132, 017001 (2024)
- \blacksquare Interaction of QP with qubit state PRX Quantum 3, 040304 (2022) Nature Communications volume 5, 5836 (2014)

Suggested mitigation strategies:

- **Normal conducting phonon and QP traps**
- **If all increased gap difference left/right of JJ**

Nature Communications volume 13, 6425 (2022)

Focus of our study:

Infrared-induced QPs in different base layer materials

Measuring Quasiparticle-Tunneling with Offset-Charge Sensitive **Devices**

- **Two-qubit device with** smaller islands
- E_C/E_J \approx 17 at lower sweet spot
- Charge dispersion \approx 1-5 MHz
- **Materials: Niobium or** Tantalum on Silicon substrate with Aluminum junctions

Measuring Quasiparticle-Tunneling with Offset-Charge Sensitive **Devices**

Ramsey sequence maps CP state to qubit state:

- even: state switches
- odd: state remains

Restless readout scheme toggling/steady sequence

Investigating Quasiparticles at ETHZ-PSI Quantum Computing Hub

Measurement campaign started in early 2023

Goals:

- **Understand QP dynamics in** Nb/Ta-based quantum devices
- **Study infrared (IR) background as** QP source
- **Develop best practices for** superconducting qubit setups

$$
\hat{S}(f, \Gamma, A) = \sum_{i=0}^{2} \frac{8A_i \Gamma_i}{(2\Gamma_i)^2 + (2\pi f)^2}
$$

PSD of QP tunneling in Nb and Ta

Investigating the Response of QP-Tunneling Rates to Far-Infrared-Radiation

- **Operate Manganin heating wire inside shielding** PRX Quantum 3, 040304 (2022)
- Wire temperature at maximal power estimated ≈ 5 K
- **Wire emits black body IR radiation**
- **Measure tunneling time 1/** Γ_0 **, at given wire power**

Observe:

- $1/\Gamma_0$ lower in Ta
- $1/\Gamma_0$ scales steeper with IR in Ta
- **Possibly effect of frequency spectrum,** or QP termination: recombination vs. trapping

Investigating the Response of QP-Tunneling Rates to Far-Infrared-Radiation $\hat{T}_1 = (\Gamma_0 + 1/T_{1,lim})^{-1}$

Observe:

- In Ta devices T_1 scales with tunneling time
- Tunneling harmful for Ta devices already in background regime
- \rightarrow Mitigation of QP tunneling crucial for qubit coherence

Mitigating background tunneling rates

Test effect of in-line eccosorb filters and IR absorbing foam

Mitigating background tunneling rates

Test effect of in-line eccosorb filters and IR absorbing foam

- Observe:
	- **Position of filter impacts filtering efficiency**

Mitigating background tunneling rates

Test effect of in-line eccosorb filters and IR absorbing foam

Observe:

- **Position of filter impacts filtering efficiency**
- **IF IR travels through free space and in lines**
- **IF ALTA:** IR among main sources of background QPs

Towards understanding the origins of excess quasiparticles

Time-dependent analysis:

Tunneling rate decays, starting from cooldown

Towards understanding the origins of excess quasiparticles

Time-dependent analysis:

- **Tunneling rate decays, starting from cooldown**
- Rate resets after thermal cycle [Nature Physics](https://www.nature.com/nphys) volume 18, pages 145–148 (2022)
- **Decay is steeper in Ta devices** \rightarrow **matching the steeper** response of Ta devices to IR

Towards understanding the origins of excess quasiparticles

Time-dependent analysis:

- **Tunneling rate decays, starting from cooldown**
- Rate resets after thermal cycle [Nature Physics](https://www.nature.com/nphys) volume 18, pages 145–148 (2022)
- **Decay is steeper in Ta devices** \rightarrow **matching the steeper** response of Ta devices to IR
- **Decaying rate scales with IR background (no foam,** reduced light tightness)

Possible origin:

- **IR from slowly cooling components**
- Decaying rates attributed to stress relaxation SciPost Phys. Proc. 12, 013 (2023)

arXiv:2208.02790 (2022)

Summary and Outlook

Learnings:

- **In-line and in free space infrared radiation are major sources of** background quasiparticles in standard cryogenic setups
- Rate decays with time after cooldown and is reduced by filtering and foam
- **Possible origin of infrared: slowly cooling components**

What's next?

- Investigate response to IR with monochromatic THz laser
- Simulate QP diffusion for quantitative understanding

Appendix

Diffusion Simulation (WIP)

Device parameters and material constants

at lower sweet spot literature values

Cooper -pair box and transmon regimes

(b) $E_J/E_C = 5.0$ (a) $E_J/E_C = 1.0$ 10 8 E_m/E_{01} 6 Ω -2 -2 -1 Ω (d) $E_J/E_C = 50.0$ (c) $E_J/E_C = 10.0$ 2 $/E_{01}$ $E_{\stackrel{\rightharpoonup}{n}}$ $\sim \sqrt{8E_JE_C}$ 0 n_q^0 n_q^0 -2 -1 $\overline{2}$ -2 -1

Charge-sensitivity of qubits can be controlled through Josephson-charge-energy ratio.

Low ratio called **"cooper pair box".**

High ratio called **"transmon".**

 \overline{z}

 \overline{a}

Sample box design

Photon transmission through slits around connectors possible.

Electronics device stack

ZI devices in use:

- **SHFQA quantum analyzer for readout pulses** and processing
- HDAWQ arbitrary waveform generator for drive pulses

