EHzürich

Investigating Infrared-Induced Excess Quasi-Particles in Superconducting Qubits

Michael Kerschbaum, Felix Wagner, Uros Ognjanovic, Giovanni Vio, Kuno Knapp, Dante Colao Zanuz, Alexander Flasby, Andreas Wallraff, Jean-Claude Besse

06/07/2024, EXCESS24

Superconducting Circuits as a Platform for Quantum Information Processing

Quasiparticle Tunneling Causes Relaxation and Dephasing

- Electrical field (\approx kV/m) in JJ interacts with QPs \rightarrow decay
- Even/odd charge parity (CP) island changes qubit energy
- Tunneling QP switches CP → dephasing

- At T≈40 mK film electrons are paired, binding energies 2∆ ≈ meV ≈ 250 GHz
- Athermal photons/phonons can break pairs creating quasiparticles (QPs)
- QPs can tunnel through Josephson junctions (JJs)

Charge Dispersion

State-of-the-Art

Previously studied in literature:

- Phonon bursts from high energy particles as QP sources Nature Physics volume 18, pages 107–111 (2022)
- Antenna modes of the qubit island as QP sources ^{arXiv:2103.06803 (2021)} Phys. Rev. Lett. 132, 017001 (2024)
- Interaction of QP with qubit state
 PRX Quantum 3, 040304 (2022) Nature Communications volume 5, 5836 (2014)

Suggested mitigation strategies:

- Normal conducting phonon and QP traps
- Increased gap difference left/right of JJ

Nature Communications volume 13, 6425 (2022)

Focus of our study:

Infrared-induced QPs in different base layer materials

ETHzürich

Measuring Quasiparticle-Tunneling with Offset-Charge Sensitive Devices

- Two-qubit device with smaller islands
- E_C/E_J ≈ 17 at lower sweet spot
- Charge dispersion ≈ 1-5 MHz
- Materials: Niobium or Tantalum on Silicon substrate with Aluminum junctions

ETHzürich

Measuring Quasiparticle-Tunneling with Offset-Charge Sensitive Devices

Ramsey sequence maps CP state to qubit state:

- even: state switches
- odd: state remains

Restless readout scheme toggling/steady sequence

Michael Kerschbaum | 26/6/2024

- 6

Quantum Device Lab

Investigating Quasiparticles at ETHZ-PSI Quantum Computing Hub

Measurement campaign started in early 2023

Goals:

- Understand QP dynamics in Nb/Ta-based quantum devices
- Study infrared (IR) background as QP source
- Develop best practices for superconducting qubit setups

$$\hat{S}(f, \Gamma, A) = \sum_{i=0}^{2} \frac{8A_{i}\Gamma_{i}}{(2\Gamma_{i})^{2} + (2\pi f)^{2}}$$

PSD of QP tunneling in Nb and Ta

Investigating the Response of QP-Tunneling Rates to Far-Infrared-Radiation $\hat{\Gamma}(P_{W} \land n c) = AP^{n} + C$

- Operate Manganin heating wire inside shielding PRX Quantum 3, 040304 (2022)
- Wire temperature at maximal power estimated ≈ 5 K
- Wire emits black body IR radiation
- Measure tunneling time 1/Γ₀, at given wire power

Observe:

- $1/\Gamma_0$ lower in Ta
- 1/Γ₀ scales steeper with IR in Ta
- Possibly effect of frequency spectrum, or QP termination: recombination vs. trapping

Investigating the Response of QP-Tunneling Rates to Far-Infrared-Radiation $\hat{T}_1 = (\Gamma_0 + 1/T_{1,lim})^{-1}$

Observe:

- In Ta devices T₁ scales with tunneling time
- Tunneling harmful for Ta devices already in background regime
- → Mitigation of QP tunneling crucial for qubit coherence

Mitigating background tunneling rates

Test effect of in-line eccosorb filters and IR absorbing foam

Mitigating background tunneling rates

Test effect of in-line eccosorb filters and IR absorbing foam **Observe:**

• Position of filter impacts filtering efficiency

Mitigating background tunneling rates

Test effect of in-line eccosorb filters and IR absorbing foam **Observe:**

- Position of filter impacts filtering efficiency
- IR travels through free space and in lines
- IR among main sources of background QPs

Towards understanding the origins of excess quasiparticles

Time-dependent analysis:

Tunneling rate decays, starting from cooldown

Towards understanding the origins of excess quasiparticles

Time-dependent analysis:

- Tunneling rate decays, starting from cooldown
- Rate resets after thermal cycle
 Nature Physics volume 18, pages 145–148 (2022)
- Decay is steeper in Ta devices → matching the steeper response of Ta devices to IR

Towards understanding the origins of excess quasiparticles

Time-dependent analysis:

- Tunneling rate decays, starting from cooldown
- Rate resets after thermal cycle
 Nature Physics volume 18, pages 145–148 (2022)
- Decay is steeper in Ta devices → matching the steeper response of Ta devices to IR
- Decaying rate scales with IR background (no foam, reduced light tightness)

Possible origin:

- IR from slowly cooling components
- Decaying rates attributed to stress relaxation

SciPost Phys. Proc. 12, 013 (2023)

arXiv:2208.02790 (2022)

Summary and Outlook

Learnings:

- In-line and in free space infrared radiation are major sources of background quasiparticles in standard cryogenic setups
- Rate decays with time after cooldown and is reduced by filtering and foam
- Possible origin of infrared: slowly cooling components

What's next?

- Investigate response to IR with monochromatic THz laser
- Simulate QP diffusion for quantitative understanding

Appendix

EHzürich

Diffusion Simulation (WIP)

Device parameters and material constants

$\dot{x} = D(D_n, E, \Delta) \nabla^2 x - sx - rx^2 - downconverse $						sion	n $+g(\mathbf{r},E,t,\Delta)$	
$x = x(\mathbf{r}, E, t)$ $D(D_n, E, \Delta) = D_n \sqrt{1 - (\frac{\Delta}{E})^2}$						E _c (G⊦	E _c (GHz)	
$x = n_{QP}/n_{CP}$ $\eta(e, E, \Delta) \sim (1.8/e)[(E/\Delta) - 1]^3$						E _J (GH	E _J (GHz)	
arXiv:2402.15471						charge	charge dispersion (MHz) 15.7	
	Δ (meV) r (1/ns) s		s (1/ns)	; (1/ns) e (1/ns)		readou	readout freq Q1 (GHz)	
Nb	2.32	1/0.149	1/3e3	0.15	0.12	readout freq Q2 (GHz)		7.38
Та	1.35	1/1.78	1/25e3	1.78	0.8	Purcell freq Q1 (GHz)		7.2

literature values

2.25

at lower sweet spot

Purcell freq Q2 (GHz)

7.4

0.186

1/110

1/2e6

440

AI

ETHzürich

Cooper - pair box and transmon regimes

(b) $E_J/E_C = 5.0$ (a) $E_J/E_C = 1.0$ 10 8 E_m/E_{01} 6 0 -7 -2 -1 0 (d) $E_J/E_C = 50.0$ (c) $E_J/E_C = 10.0$ 2 $/E_{01}$ E_m $\sim \sqrt{8E_JE_C}$ 0 n_a^0 n_q^0 -2 -1 2 -2 -1

Charge-sensitivity of qubits can be controlled through Josephson-charge-energy ratio.

Low ratio called "cooper pair box".

High ratio called "transmon".

2

2

Phys. Rev. A 76, 042319 (2007)

ETH zürich

Sample box design

Photon transmission through slits around connectors possible.

Electronics device stack

ZI devices in use:

- SHFQA quantum analyzer for readout pulses and processing
- HDAWQ arbitrary waveform generator for drive pulses

