Energy release from recrystallization of amorphous pockets and lowenergy excess signals

Kai Nordlund, Fanhao Kong, Flyura Djurabekova, Matti Heikinheimo, and Kimmo Tuominen

Department of Physics, University of Helsinki, Finland

Nader Mirabolfathi

Texas A&M University, USA

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

www.helsinki.fi/yliopisto

- ➢ Radiation damage in semiconductors: a very brief overview
- ➢ Results
	- ➢ Damage recombination at ns times after a cascade
	- ➢ Energy release spectrum of events
	- \triangleright Avalanche mechanism of annealing
	- ➢ Time scale of annealing events at cryogenic temperatures
- ➢ Conclusion

Radiation damage in semiconductors: it is not Frenkel pairs

- \triangleright We have studied damage in a wide range of metals, semiconductors and ionic material over the last 30 years
- ➢ For semiconductors, key message: primary damage is practically never simple Frenkel pairs (vacancies and interstitials) 1000 eV Si recoil in Si

[K. Nordlund *et al*, Phys. Rev. B 57, 7556 (1998); K. Nordlund *et al,* J. Nucl. Mater. 512, 450 (2018)]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Our previous works on relation of defects and dark matter

 \triangleright We have previously shown that DM interactions with a single crystalline detector of known orientation may lead to a distinct daily variation in DM observations

[F. Kadribasic et al,, Phys. Rev. Lett. 120, 111301 (2018); F. Kadribasic et al, Journal of Low Temperature Physics 5-6, 1146 (2018); M. Heikinheimo et al,, Phys. Rev. D 99, 103018 (2019); S. Sassi et al, Phys. Rev. D 104, 063307 (2021); S. Sassi et al, Phys. Rev. D. 106 (2022) 083009 M. Heikinheimo et a, Phys. Rev. D 106 (2022) 083009]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Department of Physics Prof. Kai Nordlund

Recent observations: low-energy excess and defects in solids??

➢ Defects produced by radiation or other means store energy in solids

➢ Could the DM excess signal be somehow related to this?

[M. Heikinheimo et al, Phys. Rev. D **106**, 083009 (2022)]

HELSINGIN YLIOPISTO IGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Our hypothesis to be tested

- ➢ Could recombination of damage induced by radioactive impurities in the materials or surroundings be a source of energy release
	- ➢ Decay of radioactive impurity isotopes are a known source of background signal in detectors
	- \triangleright Radioactive impurities are practically impossible to avoid
	- \triangleright Could there be a delayed signal from the damage production?
- ➢ We set out to test this systematically, using our best understood material Si as a basis

Annealing simulations, example animation

- \triangleright Cascade + its annealing at 300 K for 3 ns
	- \triangleright Extent of damage after cascade shown with dashed lines
- ➢ Major annealing observed in the time intervals
	- $\geq 20-30$ ps
	- $>$ 50-60 ps
	- ➢ 200-300 ps
	- ≥ 900 ps -1 ns

Segment of a cascade induced by a 5 keV recoil in Si + its annealing at 300 K

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Systematic analysis of annealing energy release

- \triangleright The annealing runs were systematically analyzed for number of defects and potential energy
- ➢ The results show rapid annealing within first \sim 100 ps from damage event, but after that continued intermittent annealing events for as long the simulations were ran – up to 100 ns

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Temperature dependence

- ➢ At 600 K such annealing as been reported many times before
- ➢ What was surprising was that similar annealing events were observed even at 100 K and below!

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Department of Physics Prof. Kai Nordlund

Statistics of energy release

- ➢ Taking the energy release peaks from all the independent annealing+quenching runs, one can get a statistical distribution of the energy release
	- ➢ Remarkably, the slope almost independent of temperature
	- \triangleright Slope also remains the same when the quantum mechanical zero point vibrations are taken into account

Statistics of energy release: comparison with experiments

- ➢ This data can be compared directly with the experimental low-energy excess exponential tail
	- ➢ Outstanding agreement!

HELSINGIN YLIOPISTO NGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Why is the statistics of energy release independent of temperature?

➢ To understand why the energy release has practically no dependence on temperature, we analyzed in detail some individual recombination events

➢ Atoms plotted with displacement color scale

A recombination avalanche

- ➢ We observed that the large energy release events are always at low-temperatures preceded by crossing a very small ~ 0.1 eV) barrier **Trigger**
- ➢ This initial small rearrangement of atoms slightly heats up the immediate surroundings, which can **trigger** a much larger atom rearrangement and hence energy release
	- \triangleright This is analogous to critical phenomena, such as avalanches in sand piles or snow
- ➢ We hence call this a "recombination avalanche" effect
	- ➢ Such events are observed up to the maximum simulation time of 30 ns – no reason there would be an upper time limit

NGIN YLIOPISTO GFORS UNIVERSITET **UNIVERSITY OF HELSINKI**

Department of Physics

TS2

 -0.078 eV

 -1.697 eV

TS₃

State:

TS⁻

tate 1 +0.076 eV

Avalanche

TS₅

State 6

TS4

 $+0.06$ eV

 -0.438 eV

Animation of recombination avalanche

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Timescale of events

- \triangleright In purely classical molecular dynamics, the rate of energy release does slow down with temperature
- ➢ At the cryogenic detector temperature of 0.04 K, the rate would be astronomically high (pun intended)
- ➢ However, taking into account quantum vibrations, we observe annealing effects even at 0.05 K with a decay time constant of the order of microseconds
	- ➢ If the **entire macroscopic** detector e.g. undergoes a radioactive decay **anywhere** at rates < 1 event/microsecond, this predicts a roughly constant signal if the time resolution of the detectors is above microseconds

HELSINGIN YLIOPISTO **GFORS UNIVERSITET UNIVERSITY OF HELSINKI**

Conclusion

- \triangleright Energy release from defects in Si follow a very similar exponential energy dependence as the experimentally observed "low-energy excess" in semiconductor detectors
	- ➢ Defects could be induced by radiactive impurities or possibly also be associated with cracks or other inherent defects
- \triangleright The energy release is almost independent of temperature due to a "recombination avalanche" effect
- ➢ Outlook: nanocalorimetry and/or pulsed ion beam experiments could be used to confirm the effect?

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Actually: we are the energetic particles hitting the dark matter!

230 km/s

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

 \bullet

Faculty of Science Department of Physics

 \bullet

 $\ddot{\cdot}$

 \bullet .

Kinetic energy transfer from dark matter to ordinary atom nucleus

➢ Estimation of order of magnitude of energy transfer:

 \triangleright **Assume** dark matter particle of mass $m_1 = 1$ GeV/c²

 \geq 220 km/s corresponds to E_{DM} = 269 eV

- ➢ A typical low-energy ion gun energy!
- \triangleright From DM density of \sim 1 GeV/cm^{\land}3 given by astronomical models, we can deduce our bodies pass **through 30 billion DM particles per second.**

 \triangleright Then we can calculate the energy transfer in a head on collision from basic kinematics to a Si atom $(m₂=28 \text{ u})$:

$$
T = \frac{4m_1m_2}{(m_1+m_2)^2}E_{DM} = 38 \text{ eV}
$$

 \triangleright This is in the range of threshold displacement energies in Si!

HELSINGIN YLIOPISTO IGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Relative movement effects

- ➢ The motion of the sun around the galaxy would give a constant level of recoil energies to ordinary matter from the "WIMP wind"
	- \triangleright This would be difficult to distinguish from any number of regular background radiation sources
- \triangleright However, any position on earth rotates around its axis
	- \triangleright This should give a daily variation in the signal if measured **in a direction sensitive way** from a crystal fixed on earth
- ➢ Moreover: the earth rotates around the sun at 30 km/s
	- \triangleright This should give an annual variation in the signal in a given direction

[Fig: wikipedia]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Key idea: utilize the threshold displacement energy in detection

- \triangleright In case it so happens that the energy transfer from dark matter to ordinary matter is **around the threshold displacement energy**, then:
	- ➢ If you make a single-crystal highly sensitive detector, and fix it on earth, the dark matter detection signal should vary daily!
		- \triangleright Simplified argument: if the relative motion of the detector w.r.t. the dark matter background is in a direction such that the energy transfer is just below the threshold, no signal, above: clear signal
	- \triangleright In reality if is of course a convolution of the kinetic energy distribution of dark matter itself, the movement of the earth and the threshold displacement energy surface

Our work: systematic analysis of effect

- ➢ Formulate a way to calculate transfer of dark matter particles to ordinary ones
- ➢ 1. Distribution of dark matter particle velocities (with galactic escape velocity truncation) in galaxy

$$
f_{\rm gal}(\mathbf{v}) = \begin{cases} & \frac{1}{N_{\rm esc}(2\pi\sigma_v^2)^{3/2}} \exp\left[-\frac{\mathbf{v}^2}{2\sigma_v^2}\right] & \text{if } |\mathbf{v}| < v_{\rm esc} \\ 0 & \text{if } |\mathbf{v}| \ge v_{\rm esc} \end{cases}
$$

➢ 2. Radon transform to get to lab coordinates on Earth from motion and rotation of Earth, and movement of solar system around the galaxy

$$
\hat{f}_{\text{lab}}(v_{\text{min}}, \hat{q}; t) = \frac{1}{N_{\text{esc}} \sqrt{2\pi\sigma_{\nu}^2}} \times \left[\exp\left(-\frac{|v_{\text{min}} + \hat{q} \cdot v_{\text{lab}}|^2}{2\sigma_{\nu}^2} \right) - \exp\left(-\frac{v_{\text{esc}}^2}{2\sigma_{\nu}^2} \right) \right]
$$

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science Department of Physics

Prof. Kai Nordlund **22** and F. Djurabekova, Phys. Rev. Lett. **120**, 111301 (2018)] [F. Kadribasic, N. Mirabolfathi, K. Nordlund, A. E. Sand, E. Holmström,

Our work: full 3D surface from classical potentials

- ➢ We used the DFT results to find which classical interatomic potentials are closest to them
	- ➢ For Si original Stillinger-Weber potential, for Ge Stillinger-Weber potential modified by Nordlund in 1998
- ➢ Then systematic simulations of 85 000 directions in Ge, 24 000 in Si and 5000 in diamond. Results:

NGIN YI IOPISTO UNIVERSITY OF HELSINKI

From threshold to signal

 \triangleright A computer code implementing the numerical convolution integrals 1-4 then allows predicting the dark matter signal for a given (assumed) mass

➢ Note major differences per time of day

HELSINGIN YLIOPISTO IGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science Department of Physics

Prof. Kai Nordlund **Control in the Control of August** 2014, Prof. Kai Nordlund **24 and F. Djurabekova, Phys. Rev. Lett. 120, 111301 (2018)]** 6.7.2024 [F. Kadribasic, N. Mirabolfathi, K. Nordlund, A. E. Sand, E. Holmström,

Daily variation

 \triangleright Example for 300 MeV/c² dark matter particle

[F. Kadribasic, N. Mirabolfathi, K. Nordlund, A. E. Sand, E. Holmström, and F. Djurabekova, Phys. Rev. Lett**. 120**, 111301 (2018)]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

$\sum_{i=1}^n a_i$

Conclusion

➢ **Else:** even if dark matter is never detected, **the detectors developed are incredible and will certainly be useful for other purposes!**

[F. Kadribasic et al,, Phys. Rev. Lett. 120, 111301 (2018); F. Kadribasic et al, Journal of Low Temperature Physics 5-6, 1146 **HELSINGIN YLIOPISTO** (2018); M. Heikinheimo et al,, Phys. Rev. D 99, 103018 (2019); S. Sassi et al, Phys. Rev. D 104, 063307 (2021); S. Sassi et al, **HELSINGFORS UNIVERSI** UNIVERSITY OF HELSINK Phys. Rev. D. 106 (2022) 083009 M. Heikinheimo et a, Phys. Rev. D 106 (2022) 083009]