Energy release from recrystallization
of amorphous pockets and low-
energy excess signals
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Radiation damage in semiconductors:
it iIs not Frenkel pairs

We have studied damage in a wide range of metals,
semiconductors and ionic material over the last 30 years

For semiconductors, key message: primary damage is
practically never simple Frenkel pairs (vacancies and
Interstltlals) 1000 eV Si recoil in Si
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Our previous works on relation of
defects and dark matter
We have previously shown that DM interactions with a

single crystalline detector of known orientation may lead
to a distinct daily variation in DM observations

. Time - 09:45

[F. Kadribasic et al,, Phys. Rev. Lett. 120, 111301 (2018); F. Kadribasic et al, Journal of Low Temperature Physics 5-6, 1146
(2018); M. Heikinheimo et al,, Phys. Rev. D 99, 103018 (2019); S. Sassi et al, Phys. Rev. D 104, 063307 (2021); S. Sassi et al,
Phys. Rev. D. 106 (2022) 083009 M. Heikinheimo et a, Phys. Rev. D 106 (2022) 083009]



Recent observations: low-energy
excess and defects in solids??

Defects produced by radiation or other means store
energy in solids

Could the DM excess signal be somehow related to this?
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Our hypothesis to be tested

Could recombination of damage induced by radioactive
Impurities in the materials or surroundings be a source
of energy release

Decay of radioactive impurity isotopes are a known source
of background signal in detectors

Radioactive impurities are practically impossible to avoid

Could there be a delayed signal from the damage
production?

We set out to test this systematically, using our best
understood material Si as a basis



Annealing simulations, example
animation

Segment of a cascade induced by a5 keV recoil in Si + its annealing at 300 K
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Systematic analysis of annealing
energy release
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The annealing runs were
systematically analyzed for
number of defects and
potential energy

The results show rapid
annealing within first ~ 100
ps from damage event, but
after that continued
Intermittent annealing
events for as long the
simulations were ran — up
to 100 ns

Department of Physics
Prof. Kai Nordlund
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Temperature dependence

At 600 K such annealing as been reported many times
before

What was surprising was that similar annealing events
were observed even at 100 K and below!
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Statistics of energy release

Taking the energy release peaks from all the independent
annealing+quenching runs, one can get a statistical
distribution of the energy release

Remarkably, the slope almost independent of temperature

Slope also remains the same when the qguantum mechanical
zero point vibrations are taken into account
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Statistics of energy release:
comparison with experiments

This data can be compared directly with the experimental
low-energy excess exponential tall

Outstanding agreement!
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Why is the statistics of energy release
independent of temperature?

To understand why the energy release has practically
no dependence on temperature, we analyzed in detalil
some individual recombination events

Atoms plotted with displacement color scale

ntial energy (eV)
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A recombination avalanche

We observed that the large energy release events are always

at low-temperatures preceded by crossing a very small (~ 0.1
eV) barrier

Trigger

This initial small rearrangement of

atoms slightly heats up the
immediate surroundings, which A
can trigger a much larger atom
rearrangement and hence energy release

This is analogous to critical phenomena,
such as avalanches in sand piles or snow

Avalanche

We hence call this a “recombination avalanche” effect

Such events are observed up to the maximum simulation time of
30 ns — no reason there would be an upper time limit



Animation of recombination
avalanche
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Timescale of events

In purely classical molecular dynamics, the rate of energy
release does slow down with temperature

At the cryogenic detector temperature of 0.04 K, the rate
would be astronomically high (pun intended)

However, taking into account quantum vibrations, we
observe annealing effects even at 0.05 K with a decay time
constant of the order of microseconds

If the entire macroscopic
detector e.g. undergoes a
radioactive decay anywhere

at rates < 1 event/microsecond,
this predicts a roughly constant
signal if the time resolution of the
detectors is above microseconds
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Conclusion

Energy release from defects in Si follow a very similar

exponential energy dependence as the experimentally
observed “low-energy excess” in semiconductor
detectors

Defects could be induced by radiactive impurities or
possibly also be associated with cracks or other
Inherent defects

The energy release is almost independent of
temperature due to a “recombination avalanche” effect

Outlook: nanocalorimetry and/or pulsed ion beam
experiments could be used to confirm the effect?
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Actually: we are the energetic

particles hitting the dark matter!
S A 230 km/s
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Kinetic energy transfer from dark
matter to ordinary atom nucleus

Estimation of order of magnitude of energy transfer:
Assume dark matter particle of mass m;= 1 GeV/c?
220 km/s corresponds to Epy, = 269 eV

A typical low-energy ion gun energy!

From DM density of ~ 1 GeV/cm”3 given by astronomical
models, we can deduce our bodies pass through 30 billion
DM particles per second.

Then we can calculate the energy transfer in a head on
collision from basic kinematics to a Si atom (m,=28 u):

4‘m1m2
T = (m1+m2)2 EDM = 38 eV

This is in the range of threshold displacement energies in Si!




Relative movement effects

The motion of the sun around the galaxy would give a constant
level of recoil energies to ordinary matter from the “WIMP wind”

This would be difficult to distinguish from any number of regular
background radiation sources

However, any position
on earth rotates around
its axis
This should %ive a dalil
variation in the signal i
measured in a direction

sensitive way from a
crystal fixed on earth

Moreover: the earth
rotates around the
sun at 30 km/s

This should give an
annual variation in the
signal in a given
direction

[Fig: wikipedia]



Key idea: utilize the threshold
displacement energy in detection

In case it so happens that the energy transfer from dark
matter to ordinary matter is around the threshold
displacement energy, then:

If you make a single-crystal highly sensitive detector, and

fix it on earth, the dark matter detection signal should vary

daily!

» Simplified argument: if the relative motion of the detector w.r.t.
the dark matter background is in a direction such that the

energy transfer is just below the threshold, no signal, above:
clear signal

In reality if is of course a convolution of the kinetic energy
distribution of dark matter itself, the movement of the earth
and the threshold displacement energy surface



Our work: systematic analysis of
effect

Formulate a way to calculate transfer of dark matter
particles to ordinary ones

1. Distribution of dark matter particle velocities (with
galactic escape velocity truncation) in galaxy
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2. Radon transform to get to lab coordinates on Earth
from motion and rotation of Earth, and movement of
solar system around the galaxy
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[F. Kadribasic, N. Mirabolfathi, K. Nordlund, A. E. Sand, E. Holmstrém,
and F. Djurabekova, Phys. Rev. Lett. 120, 111301 (2018)]
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Our work: full 3D surface from
classical potentials

We used the DFT results to find which classical
Interatomic potentials are closest to them

For Si original Stillinger-Weber potential, for Ge Stillinger-
Weber potential modified by Nordlund in 1998

Then systematic simulations of 85 000 directions in Ge,
24 000 in Si and 5000 in diamond. Results:
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From threshold to signal

A computer code implementing the numerical
convolution integrals 1-4 then allows predicting the dark

matter signal for a given (assumed) mass

;- Time - 22:15

Note major differences per time of day
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[F. Kadribasic, N. Mirabolfathi, K. Nordlund, A. E. Sand, E. Holmstrém,
and F. Djurabekova, Phys. Rev. Lett. 120, 111301 (2018)]
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_Daily variation

Example for 300 MeV/c? dark matter particle
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[F. Kadribasic, N. Mirabolfathi, K. Nordlund, A. E. Sand, E. Holmstrém, and F.
Djurabekova, Phys. Rev. Lett. 120, 111301 (2018)]
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Conclusion

If:

Dark matter exists
It is composed of particles

The patrticles interact with ordinary matter with
other means except gravity

The interaction follows Newton’s law of momentum
transfer

The interaction cross section is large enough

The dark matter particle mass is roughly in the
100 MeV/c? to 10 GeV/c? range

The detector can actually be built

Then: the approach we developed should be able
to detect dark matter, and distinguish it from other
particles thanks to a distinct diurnal variation

Probability??
99%
99%
1%

99%

1%
4%

99%
= 4x10°

Else: even if dark matter is never detected, the detectors developed
are incredible and will certainly be useful for other purposes!

[F. Kadribasic et al,, Phys. Rev. Lett. 120, 111301 (2018); F. Kadribasic et al, Journal of Low Temperature Physics 5-6, 1146
(2018); M. Heikinheimo et al,, Phys. Rev. D 99, 103018 (2019); S. Sassi et al, Phys. Rev. D 104, 063307 (2021); S. Sassi et al,
Phys. Rev. D. 106 (2022) 083009 M. Heikinheimo et a, Phys. Rev. D 106 (2022) 083009]
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