New excess measurements from NUCLEUS

Margarita Kaznacheeva

Technical University of Munich

on behalf of the NUCLEUS collaboration

Excess Workshop 2024, Rome

06.07.2024

The NUCLEUS collaboration

European Research Council Established by the European Commission

erc

≈ 55 members

The NUCLEUS Experiment

3

NUCLEUS Status in Munich and Chooz

clean tent around cryostat

Construction of NUCLEUS setup completed end of 2023

Commissioning ongoing...

New NUCLEUS laboratory at Chooz nuclear power plant, France

Construction of "Very-Near-Site" (VNS) completed

Recent News from NUCLEUS Commissioning

Cryogenic outer veto in coincidence with

First data from full NUCLEUS detector system (April 2024)

Cryogenic Outer Veto

Full setup installed (June 2024)

nu/cleus

EXPERIMENT

Milestone Result in 2022: Calibration at 100eV

NUCLEUS Timeline

NUCLEUS-10g physics run Phase 1: first physics with CEvNS Towards NUCLEUS-1kg Phase 2: precision physics with CEvNS

The detector: Al₂O₃ crystal with 2 TES

Target: Al_2O_3 crystal | 5x5x7.5mm³ | 0.75 g

Holding structures: $3 \text{ Al}_2\text{O}_3$ balls from below + $2 \text{ Al}_2\text{O}_3$ balls from above supported by brass clamps

⁵⁵Fe source is mounted above the detector module.

Independent analysis cross-checks performed

Surface measurements June 2023

Dry dilution refrigerator at TUM

- > no-shielding
- Minimal overburden (20cm of concrete)

Data taking: end of June 2023

Singles are subdominant!

Jun 2024

Surface measurements June 2023

Dry dilution refrigerator at TUM

- > no-shielding
- Minimal overburden (20cm of concrete)

Data taking: end of June 2023

Jun 2023

Jun 2024

UGL measurements March 2024

Dry dilution refrigerator at UGL

- multi-layer shielding (PE, Pb)
- > 10 m.w.e. (muons /3, no cosmic n's and p's)
- > data taking: March 2024

NUCLEUS setup

Jun 2023

Jun 2024

UGL Mar 2024 day 14-15:

Shared TES1-only TES2-only

"Singles dominant at low E"

10²

Counts

 10^{0}

0.30

UGL measurements March 2024

NUCLEUS setup

Dry dilution refrigerator at UGL

- multi-layer shielding (PE, Pb)
- > 10 m.w.e. (muons /3, no cosmic n's and p's)
- > data taking: March 2024

0.30 10² preliminary 0.25 Single TES2 (ke</ CS 0.15 Counts shared banc Energy Energy 0.05 Single TES1 0.00 10^{0} 0.10 0.15 0.30 0.00 0.05 0.20 0.25 Energy TES1 (keV)

Shared band reduced by 2 orders of magnitude!

Particles, really ?

Let's check again at surface!

Particles, really ?

Let's check again at surface!

Before mounting again at surface...

Important detail:

scheduled cleaning procedure for NUCLEUS

- Unmounting
- Cleaning/etching + clean PCB
- Remounting

Dry dilution refrigerator at TUM

- no-shielding \triangleright
- Minimal overburden (20cm of concrete) \geq

Data taking: May 2024

10⁹

"Wow, it's back at surface level!

So really, particles?"

Surface Jun 2023 day 2:

UGL Mar 2024 day 14-15:

Surface May 2024 day 2:

Shared

0.5

0.6

Shared

Shared

AND back to the UGL in June 2024

NUCLEUS setup

Jun 2023 Jun 2024

Dry dilution refrigerator at UGL

- multi-layer shielding (PE, Pb)
- > 10 m.w.e. (muons /3, no cosmic n's and p's)
- > data taking: June 2024

0.30 10³ 0.25 (ke 0.20 10² 1ES2 0.15 Counts 10¹ 0.05 0.00 100 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Energy TES1 (keV)

"Rate remains at Surface level "

Summary of observations (1)

Interesting observations:

- Excess rate seems to 1) decay with waiting time or due to cooling cycles
- Remounting seems to 2) reset Excess rate

Interesting observations:

- Single TES rate remains (almost) constant
- 2) Remounting seems to <u>not</u> affect single TES rate

What we know:

- All observation hint towards **solid-state effect** as origin for Excess
- Double TES detectors show evidence for **TES-related Excess**
- Time dependence of Excess observed at cold

What we know:

- All observation hint towards **solid-state effect** as origin for Excess
- Double TES detectors show evidence for **TES-related Excess**
- Time dependence of Excess observed at cold

Implications from new NUCLEUS measurements:

- Particle origin is not dominant at surface locations!
- Shared-band Excess: change in rate observed.
- Reset of shared-band Excess by re-assembling the detector
- Single TES Excess: no significant time dependence observed
- Single TES Excess seems unaffected by re-assembling the detector
- Single-TES Excess increasingly dominate as shared rates decay
- > **Double TES detectors are required** to reach low Excess rates

What we know:

- All observation hint towards **solid-state effect** as origin for Excess
- Double TES detectors show evidence for **TES-related Excess**
- Time dependence of Excess observed at cold

Implications from new NUCLEUS measurements:

- Particle origin not dominant at surface locations!
- Shared-band Excess: change in rate observed
- Reset of shared-band Excess by re-assembling the detector
- Single TES Excess: no significant time dependence observed
- Single TES Excess seems unaffected by re-assembling the detector
- Single-TES Excess increasingly dominate as shared rates decay
- > **Double TES detectors are required** to reach low Excess rates

Speculations:

- Decay of shared-band Excess at 300K?
- Reduction of shared-band Excess due to thermal cycles?
- After rejection of TES-related Excess \rightarrow external stress on detector dominant?
- Crystal internal stress unlikely?
- Gravity-bearing holder OR active holders the way to go?

What we know:

- All observation hint towards **solid-state effect** as origin for Excess
- Double TES detectors show evidence for **TES-related Excess**
- Time dependence of Excess observed at cold

Implications from new NUCLEUS measurements:

- Particle origin not dominant at surface locations
- Shared-band Excess: change in rate observed
- Reset of shared-band Excess by re-assembling
- Single TES Excess: no significant time dependence
- Single TES Excess seems unaffected by re-assem
- Single-TES Excess increasingly dominate as sha
- > **Double TES detectors are required** to reach lov

Speculations:

- Decay of shared-band Excess at 300K?
- Reduction of shared-band Excess due to therma
- After rejection of TES-related Excess \rightarrow external s
- Crystal internal stress unlikely ?
- Gravity-bearing holder OR active holders the w

Our track to fight the Excess

- **Use Double-TES** readout to reject Single-TES Excess
- Perform long Background Run (Jul-Sept) to **study Excess time dependence**
- Study impact of thermal cycles
- Use active holders to study/reject holder-related Excess sources

Active NUCLEUS detector holder in the pipeline

Backup slides

Trigger and cut efficiency

- Simulate simultaneous events in the data stream
- Apply triggering and analysis cuts
- Efficiency is the survived fraction

Pulse shapes

Rate evolution

Surface measurements July 2023 no Fe source

R&D cryostat

Dry NUCLEUS cryostat, no-shielding (1st floor lab)

Data taking: July 2023 @ TUM

NUCLEUS prototype measurements

J. Rothe @EXCESS 20221

J Low Temp Phys 199, 433–440 (2020)

Run4

Si holders instrumented with individual TESs

Background at higher energies

Low energies: events with a signal in only one of the TES are observed.

Events after the quality and pulse shape cuts

Majority of excess events above 50 eV belong to the shared particle band.

Additional structure with an asymmetric energy sharing between two TES. Position dependence? (not yet understood).

UGL March 2024

Consistency between 2 independent analyses

