

Below threshold events in BULLKID

Matteo Folcarelli EXCESS workshop, Sapienza, 06/07/2024

The BULLKID phonon-detector array

Phonon mediation: detection of phonons created by the energy release of particles in a **silicon** die

Monolithic structure with 60 detectors in 1 Fully multiplexed (single readout line)

60 nm thick aluminum film

Last workshop: surface background

Delicato et al. Low-energy spectrum of the BULLKID detector array operated on surface. Eur. Phys. J. C 84, 353 (2024).

Last workshop: surface background

Phonon leakage and mapping

50 % of phonons is detected in the interaction die

50 % of phonons leaks out and it is detected in nearby dice

Background: pulse shape + phonon cuts

Background: pulse shape + phonon cuts

$$\psi_n = \frac{A_n - A_{35} \cdot \langle A_n / A_{35} \rangle}{\text{norm.}}$$

Background: pulse shape + phonon cuts

Background: updates on the surface result

Background: pulses' deformation 17 Simulated pulses with the deformation New algorithm to spot the amplitude, evaluated from the average pulses time shift and deformation Signal Range below threshold template 0.4 under investigation • $\varepsilon = 0$ 0.6 • $\varepsilon = -0.1$ M. Cappelli et al 2024 0.4 JINST 19 P06034 0.2

BULLKID: Impact on Dark Matter search

Sensitivity studies performed assuming 1 year of data acquisition at LNGS

Nuclear recoil detector with:

- 0.6 kg of silicon target (fiducialized)
- 200 ÷ 50 eV threshold
- background reduced to

1 ÷ 10⁻² d.r.u

SUTTRE.

Towards the experiment

	BULLKID prototype	BULLKID-DM demonstrator		BULLKID-DM
mass	20 g	60 g		600 g
# of sensors	60	180		2300
threshold	160 eV	200 eV		200 eV or lower
bkg (d.r.u)	2x10 ⁶	< 10 ⁵		1 - 0.01
laboratory	Sapienza U.	Sapienza	LNGS?	LNGS
installation	2023	2024	2025	2027?

Towards the experiment

Thank you for the attention

ш

Matteo Folcarelli EXCESS workshop, Sapienza, 06/07/2024

BACKUP

Kinetic Inductance Detectors (KIDs)

- LC resonator made of superconductive aluminum (T < 200 mK)
- The absorbed energy breaks Cooper pairs; hence the inductance changes
- A phase and magnitude signal is measured

Readout: different KIDs coupled to a the same line

frequency scan of the 60 KIDs of BULLKID

Calibrazione ottica

Simulations: validation on Sapienza's setup

Status of the 3-wafer demonstrator

2-wafer stack operated. No issues observed

Background: efficient analysis

Efficient phonon leakage cut

LEDs and background events

