

First results for Gallium Arsenide operated as mK calorimeter

DAREDEVIL project

Andrea Melchiorre on behalf of the Daredevil group

DARK MATTER candidates and detection strategies

 $\Delta E = 10 \text{ eV}$ (Xe, Ar, He) $\Delta E = 1 \text{ eV}$ (Si, Ge, GaAs, diamond) $\Delta E = 10-100 \text{ meV}$ (GaAs, sapphire, Dirac materials) $\Delta E = 1 \text{ meV}$ (superfluid, superconductors)

Beyond WIMPs

- Current worldwide experiment focus on WIMP.
- The increasing sensitivity has resulted in the exclusion of significant portions of the phase space.
- Future experiments on a multi-ton scale are expected to approach the neutrino floor

LIGHT DARK MATTER

Various models of light dark matter have been proposed, including

- asymmetric dark matter,
- freeze-in,
- strong dynamics,

which hypothetically expand the search window to include dark matter particles at the eV scale

DAREDEVIL

DARk-mattEr-DEVIces-for-Low-energy-detection

Develop a multi-target experiment to access DM candidates with mass in the sub-GeV range.

Detection channel: scattering on target electrons

Possible target materials:

- Dirac semimetals (ZrTe5)
- Weyl semimetals (CaAuAs)
- Superconductors (AI)
- Low gap semiconductor (GaAs)

Andrea Melchiorre - EXCESS2024

Italia**domani**

DAREDEVIL COLLABORATION

Different expertise brought together for new class of detectors.

The team:

Goal of detector development

- Low threshold detection
- Linearity
- Particle identification
- 3 detection channels:
 - radiative photons
 - \circ not radiative phonons
 - charge electron/hole pairs

Low temperature calorimetry

Low temperature calorimetry

Detection channels and sensors:

- Phonon: sensitive detectors (NTD, TES)
- Light: Cryogenic light detector based on photon absorber+phonon sensor
 - Charge: SingleSite MultiSite charge discrimination

Gallium Arsenide

The intrinsic band gap of GaAs is direct and **1.42 eV** at room temperature, is crucial for its sensitivity to low-energy excitations.

Thanks to these properties GaAs can be used as:

- Low temperature calorimeter
- Scintillator

Previous measurements show also that the light yield at 10 K can increase by more than an order of magnitude by doping GaAs with Si and B

[arXiv:1904.09362]

Andrea Melchiorre - EXCESS2024

First measurement of GaAs as a calorimeter

For this first measurement of GaAs as a cryogenic calorimeter, we used:

- 2-inch diameter and 0.5 mm thick wafer (5.35 g).
- The wafer was equipped with a 3 × 0.6 × 0.4 mm NTD (Neutron Transmutation Doped Ge thermistor) - phonon sensor

After each interaction in GaAs most of the released energy is recombined in the phonon channel and measured with the NTD.

Experimental setup

⁵⁵Fe 238U

Andrea Melchiorre - EXCESS2024

Data Analysis and Results

We conducted a 12-hour long calibration. From the datastream we identify relevant signal events and several basic parameters are computed:

- Baseline level, slope, RMS
- Rise time
- Decay time
- Average pulse

Energy estimator: Optimum Filter - maximises signal to noise ratio

Rise time: 1.2 ms Decay time: 10.8 ms

Data Analysis and Results

Total energy spectrum

Low energy spectrum

Detector performance summary

Mass	5.35	g
Density	5.32	$\rm g/cm^3$
Diameter	5.08	cm
Rise time 10-90	1.2 ± 0.1	ms
Decay time 90-30	10.8 ± 0.5	ms
NTD response	450	$\mu { m V}/{ m MeV}$
Baseline resolution (RMS) PT off	283 ± 48	eV
Peak σ at 5.9 keV PT off	314 ± 22	eV
Baseline resolution (RMS) PT on	542 ± 6	eV
Peak σ at 5.9 keV PT on	546 ± 21	eV

Andrea Melchiorre - EXCESS2024

Mercury Cadmium Telluride - CdTeHg

- We want to use it as **light detector** for the radiative signal from GaAs, because the stoichiometry was tuned to achieve 0.2 eV gap suitable scintillation light from GaAs.
- photons generated in GaAs interact in a CdTeHg layer sputtered on a square silicon substrate
- the temperature increase is too low -> Neganov-Trofimov-Luke (NTL) amplification

Andrea Melchiorre - EXCESS2024

Neganov-Trofimov-Luke amplification

Amplification of phonon signal with static electric field:

- electron-hole pairs created by interacting particle are accelerated
- during the acceleration they scatter with crystal lattice
- phonon signal will be increased by a factor of 10

Next steps

These results are highly promising for the search for low-mass dark matter using GaAs crystals. As a future development we plan:

- **Double readout** of light channel (scintillation photons) heat channel (phonon) to particle identification
- Luke amplification to increase the phonon signal
- Charge collection installing electrodes
- TES (Transition Edge Sensors) as a thermal sensor

Conclusion

- We successfully conduct the first measurement of GaAs as cryogenic calorimeter
- published on arXiv [arXiv:2404.15741]
- It opens the door for new class of detectors for dark matter searches
- We want to access on black region of phase space

Thank you for your attention

Andrea Melchiorre on behalf of the Daredevil group

backup slide

Studied materials

- **Polar crystals** are characterized by the presence of a permanent dipole moment. This dipole moment results from an asymmetric distribution of electrical charges.
- Weyl semimetals are a class of topological materials that possess Weyl fermions as low-energy excitations and with a nontrivial topological aspects of their band structure.
- **Dirac semimetals** are characterized by their unique electronic properties due to Dirac points where the conduction and valence bands touch at discrete points.

NTD

Highly resistive devices with:

- $\alpha = dlogR/dlogT \sim 5$
- Small heat capacity

 $R(T) = R_0 \exp\left(\frac{T_0}{T}\right)^{r}$

At low temperature the resistivity of a critically doped semi-conductor below the MIT follows the exponential rule, with p=1/2.

TES

superconducting transition-edge sensors

- measures an energy deposition by the increase of resistance
- The resistivity varies between 0 and its normal value
- A TES can be used to measure a single energy deposition

The logarithmic sensitivity of the TES is two order of magnitude higher than for a NTD (~100)

