

The DUNE Experiment

Laura Patrizii (INFN Bologna) for the DUNE Collaboration

The Deep Underground Neutrino Experiment (DUNE) and the Long Baseline Neutrino Facility (LBNF)

A new generation long baseline neutrino oscillation experiment based on:

- v/\overline{v} beam wide band ~ 1-10 GeV high intensity: 1.2 MW upgradeable to 2.4MW produced at FNAL
- Near Detector complex at Fermilab, 576 m from the neutrino source
- Far Detector
 - **1300 km** away from neutrino source
 - **1.5 km underground** at the Sanford Underground Neutrino Facility (SURF)

INFN

4 modules 17 kt each Liquid Argon Time Projection Chambers (LArTPCs)

DUNE: Physics Program

- Long- baseline wide-band neutrino beam
 - Measurement of CP violation phase and determination of the neutrino mass ordering in a single experiment with spectral information
- Underground location \rightarrow access to astrophysical neutrinos
 - Supernova neutrino burst detection sensitive to the ν_e component
 - Atmospheric neutrino capability of ν_{τ} identification
 - Solar neutrinos potential for detection of hep flux
- Massive detectors with excellent tracking and calorimetric information
 - Search for baryon number violating processes p $\rightarrow \nu$ K+, n \bar{n}
- Long baseline + higher energy neutrino beam
 - ν_{τ} appearance, NSI searches
- Capable Near Detector Complex
 - Precise neutrino physics
 - BSM searches

Neutrino oscillations: impressive progress since 1998

PMNS^{*} neutrino mixing matrix

*Pontecorvo Maki Nakagawa Sakata

Open Questions and Unknowns

	θ_{23}	$ heta_{13}$	$ heta_{12}$	δ
Leptons	$\sim 45^{\circ}$	8.5°	34°	?
Quarks	2.4°	0.20°	13°	69°

Is the θ_{23} mixing maximal? $\theta_{23} = 45^{\circ} \rightarrow |U_{\mu3}| = |U_{\tau3}|$

- What is the neutrino mass ordering? (Is Δm_{32}^2 positive or negative?)
- Is there leptonic CP violation?
- Is θ_{23} mixing maximal?
- Is the PMNS matrix unitary?
- What is the neutrino absolute mass scale?
- Are neutrinos Majorana particles?
- Can neutrinos explain the matterantimatter asymmetry in the Universe?

LBL Oscillation Probabilities in the 3-neutrino framework

 ν_e appearance : mass ordering, $\delta_{CP} \text{ , octant of } \theta_{23}$

$$P_{\nu_{\mu} \to \nu_{e}, (\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \approx 4 \sin^{2} \theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \Delta}{(1-A)^{2}} + \alpha^{2} \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \frac{\sin^{2} A \Delta}{A^{2}} + 8 \alpha J_{CP}^{max} \cos(\Delta \pm \delta_{CP}) \sin \Delta A \frac{\sin \Delta (1-A)}{1-A}$$

$$J_{CP}^{max} = \cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \cos^{2} \theta_{13} \sin \theta_{13}$$

$$\Delta \equiv \frac{\Delta m_{31}^{2} L}{4E_{\nu}} \quad A \equiv \frac{2E_{\nu} V}{\Delta m_{31}^{2}} \quad \alpha \equiv \Delta m_{21}^{2} / \Delta m_{31}^{2} \quad V_{C} = \sqrt{2}G_{F}n_{e}.$$
for $\bar{\nu}$

$$(\alpha, \Delta, A = \alpha)$$
sensitive to the sign of Δm_{31}^{2}

 $v_{\mu} \text{ disappearance:} \\
 |\Delta m_{32}^2|, \sin \vartheta_{23}^2, \\
 constrain octant$

$$P_{\nu\mu\to\nu\mu} \approx 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \frac{\Delta m_{\mu\mu}^2 L}{4E_{\nu}} \approx 1 - \cos^2 \theta_{13} \sin^2 (2\theta_{23}) \sin^2 \frac{\Delta m_{32}^2 L}{4E_{\nu}} + \mathcal{O}(\alpha, s_{13}^2)$$

$$\sin^2 \theta_{\mu\mu} = \cos^2 \theta_{13} \sin^2 \theta_{23},$$

$$\Delta m_{\mu\mu}^2 = \sin^2 \theta_{12} \Delta m_{31}^2 + \cos^2 \theta_{12} \Delta m_{32}^2$$

$$+ \cos \delta_{\rm CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \Delta m_{21}^2$$

DUNE's way to Mass Ordering and $\delta_{\rm CP}$

measurement of v_{μ} unoscillated beam at the Near Detector : measurement of oscillated $v_{\mu} \& v_{e}$ spectra at the Far Detector : Then repeat for antineutrinos – and compare oscillations of neutrinos and antineutrinos

INFN

Sanford Underground Research Facility - SURF

Previously known as the Homestake (gold) Mine in the Black Hills in South Dakota

Excavations at SURF completed

North /South Caverns

145 m L x 20 m Wx 28 m H

Outfitting of North Cavern, South Cavern & Central Utility Cavern

LBNF Beamline

120 GeV protons from the Main Injector at FNAL

from 0.7 MW to 1.2 MW LINAC upgrade → Proton Improvement Plan - PIP-II

Accelerator Complex Evolution (ACE) > 2 MW beam power

- Main Injector Cycle time shortening
- Target System upgrade

2

4

6

8

16

INFN

10

Year

12

14

18

20

LBNF neutrino beam

- beamline at a slope of 5.8°
- 120 GeV proton beam onto a graphite target
- pulse duration: 10 µs
- 3 horn focusing system, water cooled, peak current of 300 kA
- Forward /Reverse Horn Current
- He filled decay pipe, 194 m long, 4 m \emptyset
- wide band beam
- design optimized to CP violation sensitivity

FHC

(**v-mode**)

Eur. Phys. J. C 80 10, 978 (2020)

Neutrino Oscillations in DUNE

DUNE Phased Construction

Phase-II

40 kt fiducial

>2 MW

ND-LAr, ND-GAr, SAND

Impact

FD statistics

FD statistics

Systematics

Phase-I

20 kt fiducial

up to 1.2 MW

ND-LAr, TMS, SAND

options other than LAr for ND, FD Phase-II detectors being considered, not listed here

14 31/5/2024

Parameter

FD mass

Beam power ND configuration

Far Detectors (FD)

2 (max 4) LAr TPCs, each 17 kt LAr (10 kt fiducial) FD Horizontal (charge) Drift FD Vertical (charge) Drift

Membrane cryostat with passive insulation Internal volume ~28'500 m³ ~17.5 kt LAr

similar cryostats already constructed (protoDUNE, SBND)

Horizontal Drift

Drift length ~ 350 cm \rightarrow 180 kV on cathode

- 150 Anode Plane Assemblies (APAs)
- 384,000 readout wires

Photon detection: X-Arapuca modules (SiPM based light traps) embedded in APAs- 300,000 SiPMs

Vertical Drift

- Drift length ~ 640 cm -> ~ 300 kV on cathode
- Charge Readout Planes -CRP: perforated PCB's
- Photon detectors on the field cage walls and on the cathode @ 300 KV; decoupling from HV, achieved with optical fibres for signal and power transmission

ProtoDUNE's @ the CERN Neutrino Platform (NP)

The Neutrino Platform provides unique test beam infrastructure for the neutrino community

Two 750 t prototypes \sim 8 x 8 x 8 m³ (1:20 scale) Validation of all FD components at full scale

NP02 : Single Phase Vertical Drift

Cosmic Ray run in 2024

NP04 : Single Phase Horizontal Drift

2018-2020 runs: charged particle beams + CRs New charged particle beam run in 2024

Near Detector Facility

🗱 Fermilab 🛛 🖸 💦 🗄

Near Detector Complex Phase I

- Measure the neutrino beam rate & spectrum to predict un-oscillated event rates in the far detector
- Constrain systematic uncertainties (flux, cross sections, detector response) for oscillation measurements
- Independent physics program
- ND-LAr → measurement of neutrino-nucleus interaction with the same target as the Far Detectors (~100 t Lar segmented TPC w/ pixelated readout)
- **TMS** \rightarrow muon spectrometer for ND-LAr
- ND-LAr+TMS move up to ~29 m off-axis
- SAND System for on Axis Neutrino Detection

SAND in DUNE

- on-axis, stationery
- superconducting magnet & Ecal from KLOE
- transparent target/tracker (CH2, C targets)
- **GRAIN** : a novel LAr detector **track imaging** with scintillation light
- > On axis v spectrum monitor : detect changes in the beam on a weekly basis
- \succ v_{μ} , \overline{v}_{μ} , v_{e} , \overline{v}_{e} fluxes and energy spectra
- > Constrain systematics from nuclear effects by measuring v and \overline{v} cross sections on nuclei other than argon (carbon and hydrocarbons)
- Physics program besides oscillations exploiting high statistics

KLOE @LNF

Neutrino Energy Spectra at FD

Normal Ordering

Oscillation Probabilites

3.5 year (staged) exposure

 $v \cdot \overline{v}$ energy spectra (appearance, disappearance) convolution of oscillation probabilities with neutrino beam flux and cross sections and detector response

Oscillation sensitivities: simultaneous fit over 4 components of FD data (disappearance and appearance spectra) with ND constraints

DUNE Exposure vs time

Mass Ordering

CP Violation

Maximal CPV

INFN

- at > 3σ in Phase I if δ_{CP} nearly maximal
- at 5σ in 7 years with Phase II

Supernova Neutrino Burst

unique sensitivity to v_e

1000 nu for a SN 10 kpc from Earth.

Exploiting the directionality of $\nu - e$ scattering events, direction of the supernova to $\approx 5 \text{ deg}$

Solar neutrinos

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

$$u_{e,\mu,\tau} + e^- \rightarrow \nu_{e,\mu,\tau} + e^-,$$

DUNE can measure ⁸B solar flux and observe hep flux Phase I: $>5\sigma$ sensitivity to hep flux

Phase II: DUNE can improve θ_{12} and Δm^2_{21}

Conclusions

- LBNF/DUNE: the ultimate neutrino facility/observatory
- DUNE will enable very rich physics program in the next decades (LifeCycle 20 years):
 - Neutrino oscillations
 - Studies of MeV-scale neutrinos
 - Several BSM searches
- LBNF and DUNE making rapid progress on facility construction, detector design, and physics analysis

- 1400 collaborators
- 35 countries
- 215 institutions including CERN

DUNE Collaboration Meeting, CERN, May 2024

(INFN DUNE