

Latest Rare Kaon Decay Results

Contents:

NFŃ

Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali di Frascati

- Status of golden modes $K \to \pi \nu \bar{\nu}$

31/5/24

Joel Swallow (INFN-LNF) [NA62]

Latest results from NA62: $K^+ \to \pi^+ \gamma \gamma$, $[K^+ \to \pi^+ \pi^0] \pi^0 \to e^+ e^-$, tagged ν

joel.christopher.swallow@cern.ch joel.swallow@lnf.infn.it

Studies of rare K^+ decays at NA62

The NA62 Experiment at CERN: *K*⁺

~300 collaborators from ~30 institutions.

- **Primary goal:** measurement of $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$
- New Technique: *K*⁺ decay-in-flight
- **Results:** [PLB 791 (2019) 156] [JHEP 11 (2020) 042] [JHEP 06 (2021) 093]
- Broader physics programme:
 - Rare K^+ decays (this talk)
 - LNV/LFV decays (e.g. $K^+ \to \mu^+ \nu e^+ e^+ [\underline{JHEP \ 09 \ (2023) \ 040]}$)
 - Exotics (e.g. Dark photon [arXiv.2312.12055], talk by T. Spadaro)
- Data taking
 - 2016 Commissioning + Physics run (45 days).
 - 2017 Physics run (160 days).
 - 2018 Physics run (217 days).
 - 2021 Physics run (85 days [10 beam dump]).
 - 2022 Physics run (215 days).
 - 2023 Physics run (150 days [10 beam dump]).
 - 2024 Physics run ongoing ...

Continues long history of Kaon physics at CERN :

NA48/1	NA48/2	NA62- <i>R_K</i>	NA62 Run1	NA62 Run2
2002	2003-4	2007-8	2016-18	2021–LS

NA62 Beamline & Detector

• Designed & optimised for study of $K^+ \to \pi^+ \nu \bar{\nu}$:

• Particle tracking: beam particle (GTK) & downstream tracks (STRAW) • PID: K^+ - KTAG, π^+ - RICH, Calorimeters (LKr, MUV1,2), MUV3 (μ detector) • Comprehensive veto systems: CHANTI (beam interactions), LAV, IRC, SAC (γ)

Precision study of $K^+ \rightarrow \pi^+ \gamma \gamma$

- Crucial test of chiral perturbation theory (ChPT).
- Branching ratio $\mathscr{B}(K^+ \to \pi^+ \gamma \gamma)$ is parameterised in ChPT by an unknown real parameter \hat{c} .
 - External inputs [PLB 835 (2022) 137594] for $\mathcal{O}(p^6)$.
- Signal selection:
 - positive track identified as π^+ , match with K^+ and 2γ in LKr.
 - Kinematic constraints on invariant mass $m_{\pi\gamma\gamma}$ and total momentum $p_{\pi\gamma\gamma}$.
 - Main kinematic variable: $z = \frac{(P_K P_\pi)^2}{m_K^2} = \frac{m_{\gamma\gamma}^2}{m_K^2}$. Select range 0.20 < z < 0.51 signal (0.04 < z < 0.12 norm.).
- Main background: $K^+ \to \pi^+ \pi^0, \pi^0 \to \gamma \gamma$ with photon cluster margining in LKr.

PLB 850 (2024) 138513

PLB 850 (2024) 138513

- Peak search in $m_a = \sqrt{(P_K P_\pi)^2} (207 350 \text{ MeV}/c^2)$ in steps of 0.5 MeV/ c^2 [m_a resolution from 2.0 0.2 MeV/ c^2 across search range].
- For each m_a hypothesis background estimated with simulation and UL on number of signal events established with CL_S method. • Gives first limits on $\mathscr{B}(K^+ \to \pi^+ a)$ for ALP decaying promptly as $a \to \gamma \gamma$, and limits on coupling strength $f_G^{-1} \sim \tau_a^{-0.5}$ in the BC11 FIPs benchmark scenario.

Search for ALP in $K^+ \to \pi^+ a, a \to \gamma \gamma$ decays

Study of $K^+ \to \pi^+ \pi^0$, $\pi^0 \to e^+ e^-$

- Experimentally observable BR: $\mathscr{B}(\pi^0 \to e^+ e^-(\gamma), x > x_{cut})$ where $x = m_{ee}^2/m_{\pi^0}^2$.
 - Dalitz decay $\pi^0 \rightarrow e^+ e^- \gamma$ dominates for low x.
 - For x > 0.95, Dalitz Decay $\approx 3.3\%$ of decay rate.
- Previous best measurement from KTeV experiment [Phys.Rev.D 75 (2007) 012004] $\mathscr{B}(\pi^0 \rightarrow e^+e^-(\gamma), x > 0.95) = (6.44 \pm 0.25_{stat} \pm 0.22_{syst}) \times 10^{-8}.$
- Using latest radiative corrections [JHEP 10 (2011) 122], [Eur.Phys.J.C 74 (2014) 8, 3010] this result can be extrapolated to the full phase-space and compared to theory:

	$\mathcal{B}\left(\pi^{0} ightarrow e^{+}e^{-}, ext{no-rad} ight) imes10^{8}$
KTeV, PRD 75 (2007)	6.84(35)
Knecht et al., PRL 83 (1999) Dorokhov and Ivanov, PRD 75 (2007) Husek and Leupold, EPJC 75 (2015) Hoferichter et al., PRL 128 (2022)	6.2(3) 6.23(9) 6.12(6) 6.25(3)

• Diagram for $\pi^0 \rightarrow e^+e^-$: • considered in theoretical predictions π^0 , with various $\pi^0 \rightarrow \gamma^* \gamma^*$ transition form factors

Study of $K^+ \to \pi^+ \pi^0$, $\pi^0 \to e^+ e^-$

- NA62 Data collected in 2017+2018 & using simulations with the latest radiative corrections included.
- Normalisation: $K^+ \rightarrow \pi^+ e^+ e^-$
 - [select ~background-free for $m_{\rho\rho} > 140 \,\text{MeV}/c^2$]
 - Identical final state, common selection criteria \rightarrow cancellation of systematics.
- Multi-track electron trigger line used to collect both signal & normalisation.
 - Level 0 (hardware) : RICH(timing), CHOD(>2 charged tracks), LKr(>30 GeV)
 - Level 1 (software) : KTAG(tag K+), STRAW(charged tracks forming vertex)
 - Downscaling factor $D_{eMT} = 8$.
 - Overall trigger efficiency $\approx 90\%$ for **both** signal & normalisation.

Study of $K^+ \to \pi^+ \pi^0$, π^0

Backgrounds:

- $K^+ \rightarrow \pi^+ e^+ e^-$: irreducible, flat in signal region $m_{ee} \approx m_{\pi^0}$
- $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^- \gamma \equiv K^+ \rightarrow \pi^+ \pi_D^0$:
 - a) π^0 Dalitz decay distribution with large-x tail.
 - b) Photon conversion in STRAW ($\gamma \rightarrow e^+e^-$) + selection of a produced e^{\pm} .
 - Suppress using STRAW hit information, building 'track segments' pointing to vertex
- $K^+ \to \pi^+ \pi^0, \, \pi^0 \to e^+ e^- e^+ e^- \equiv K^+ \to \pi^+ \pi^0_{DD}$
 - : double Dalitz decay with an undetected e^+e^- .

Study of $K^+ \to \pi^+ \pi^0$, π^0

- Fit for signal extraction: $m_{\rho\rho} \in (130, 140) \text{MeV}/c^2$
- Signal acceptance (for $x_{true} > 0.95$) $A(K^+ \to \pi^+ \pi^0_{ee}) = (5.72 \pm 0.02_{\text{stat}})\%$
- Perform maximum likelihood fit of simulated samples to data:
 - Fitted signal event yield : 597 ± 29
 - χ^2 /ndf = 25.3/19, p-value = 0.152.
 - {BR of other decays: external input from PDG}

fon fit

Preliminary Results: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^-$ **MAG2**

- Large external uncertainty from $\mathscr{B}(K^+ \to \pi^+)$ measured by NA48/2 and E865. New analysis f mode planned at NA62.
- Strong prospects for the future with optimised track electron trigger line with reduced downs collecting a large di-electron final states same
- Lower central value than KTeV measurement, but results are compatible:
 - $\mathscr{B}_{KTeV}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (6.44 \pm 0.33) \times 10^{-8}$
- corrections:

$\mathscr{B}_{NA62}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{\text{stat}} \pm 0.11_{\text{syst}} \pm 0.19_{\text{ext}}) \times 10^{-8} = (5.86 \pm 0.37) \times 10^{-8}$

		$\mid \delta \mathcal{B} \ [10^{-8}] \mid \delta \mathcal{B}$	B
+a+a-	Statistical uncertainty	0.30	
e e	Total external uncertainty	0.19	
	Total systematic uncertainty	0.11	
d moult:	Trigger efficiency	0.07	
	Radiative corrections for $\pi^0 ightarrow e^+ e^-$	0.05	
scaling,	Background	0.04	
ple.	Reconstruction and particle identification	0.04	
	Beam simulation	0.03	

• Result in agreement with theoretical expectations when extrapolated using radiative

- Goal: search for $K^+ \rightarrow \mu^+ \nu_{\mu}$ with:
 - K^+ and μ^+ detected by GTK and STRAW trackers as usual.
 - ν_{μ} interacting in LKr calorimeter (20 tons of Liquid Kr, MUV12 66ton HCAL)
- ν_{μ} Interaction probability $\mathcal{O}(10^{-11})$: CC-DIS $\nu_{\mu} \rightarrow \mu^{-}$ + shower
- Trigger based on μ^+ , μ^- and shower activity. Joel Swallow

Tagged neutrinos at NA62: strategy

NA62 preliminary

0.01

- Blind analysis, using **2022 data**.
- Signal region : $|d_{LKr}| < 60 \,\mathrm{mm}$, $|m_{miss}^2| = |(P_K - P_{\mu})^2| < 0.006 \,\text{GeV}^2/c^4$
- Sudy backgrounds using data-driven methods using side-bands:
 - $K^+ \rightarrow \mu^+ \nu$ + extra in-time activity (sidebands of d_{LKr}).
 - Mis-reconstructed K^+ decays (sidebands of m_{miss}^2).

• Normalise to $K^+ \to \mu^+ \nu$ (no interaction) : $N_K = \frac{N_{norm}}{\varepsilon_{norm}} \mathscr{B}(K^+ \to \mu^+ \nu)$ • $N_{exp}^{sigmal} = N_K \mathscr{B}(K^+ \to \mu^+ \nu) P_{int,Lkr} \varepsilon_{signal} = N_{norm} \frac{\varepsilon_{signal}}{\varepsilon_{norm}} P_{int,LKr}$

 $\varepsilon_{signal} = (2.55 \pm 0.15_{stat} \pm 0.04_{syst})\% : N_{signal}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$

• $N_{signal}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$

• Backgrounds:

• $N_{bg}^{exp}(\text{mis-reco } K^+) = 0.0014 \pm 0.0007_{\text{stat}} \pm 0.0002_{\text{syst}}$

• $N_{bg}^{exp}(\text{pileup} + K^+ \to \mu^+ \nu) = 0.04 \pm 0.02_{\text{stat}} \pm 0.01_{\text{syst}}$

- Observe 2 events in signal regions.
 - (+1 in background sideband)
- Detect full event : $K^+ \rightarrow \mu^+ \nu$, tagging the neutrino!

Tagged neutrinos at NA62: Results

Event Display - Event A

• $E_{\nu} = 52.1 \, \text{GeV}$

17

Golden Modes: $K \rightarrow \pi \nu \bar{\nu}$

• $\mathscr{B}(K \to \pi \nu \bar{\nu})$ highly suppressed in SM

- Theoretically clean \Rightarrow high precision SM predictions
 - Dominated by short distance contributions.
 - Hadronic matrix element extracted from $\mathscr{B}(K \to \pi^0 \ell^+ \nu_\ell)$ decays via isospin rotation.
- High sensitivity to new physics: unique flavour physics probe to reach a model independent O(100) TeV mass scale
 - BR predictions modified by O(50%) in multiple BSM scenarios (Z', little higgs, Randall-Sundrum, non-MFV MSSM, LFUV leptoquark...)

Mode	SM Branching Ratio	Experimental Status		
$K^+ \to \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$	$(10.6 \pm 4.0) \times 10^{-11}$ NA62 Run1		
$K_L \to \pi^0 \nu \bar{\nu}$	$(2.94 \pm 0.15) \times 10^{-11}$	$< 300 \times 10^{-11}$ KOTO (2015 data)		

^Recent SM calculations [Buras & Venurini, Acta Phys.Polon.B 53 6, A1][arXiv:2205.01118]

$K^+ \rightarrow \pi^+ \nu \bar{\nu} \lambda \lambda K^-$

NA62 Performance Keystones:

- $\mathcal{O}(100) ps$ timing between detectors
- $\mathcal{O}(10^4)$ background suppression from kinematics
- > 10^7 muon rejection
- > 10^7 rejection of π^0 from $K^+ \rightarrow \pi^+ \pi^0$ decays

$K^+ \rightarrow \pi^+ \nu \bar{\nu} \nu \bar{\nu}$ with NA62 RUN2 data (2021+22) (NA62 SPSC report 2024)

- Analysis overhauled and re-optimised for high intensity data.
- Improve signal yield by 50% and improving overall sensitivity.
 - Number of expected signal events per good SPS spill increased: $1.7 \times 10^{-5} \rightarrow 2.5 \times 10^{-5}$.

NA62 SPSC report 2024 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with NA62 RUN2 data (2021+22) Work in • Data was taken at the (hardware) high intensity limit. • Studied these limits and understood how the yield of signal $K^+ \to \pi^+ \nu \bar{\nu}$ events

- evolves with intensity.
 - Determined an optimum operating condition, adopted starting from mid 2023.

• Located at J-Park 30 GeV main ring.

K. shiomi : Kaons @ CERN 2023

Calculate z vertex on the beam axis

 $M^{2}(\pi^{0}) = 2E_{1}E_{2}(1 - \cos\theta)$

Calculate π^0 transverse momentum

- Charged Veto newly installed in 2021.

• Long-term data-taking campaign with 10x more data expected in 3-4 more years (60 days/year). • Latest preliminary results based on 2021 data where background is smallest due to Upstream

 $K_I \rightarrow \pi^0 \nu \bar{\nu}$ at KOTO : 2016–18 results

Background Table	Number of events
$K_L \rightarrow 3\pi^0$	0.01 ± 0.01
$K_L \rightarrow 2\gamma$ (beam halo)	0.26 ± 0.07^{a}
Other K_L decays	0.005 ± 0.005
K^{\pm}	$0.87\pm0.25^{\rm a}$
Hadron cluster	0.017 ± 0.002
$CV \eta$	0.03 ± 0.01
Upstream π^0	0.03 ± 0.03
_	1.22 ± 0.26

- - Reduce by factor 13 with 97% signal efficiency.

26

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at KOTO : PRELIMINARY 2021 analysis

Single Event Sensitivity(S.E.S.):8.7×10-10

c.f. 2016-2018 analysis:7.2×10⁻¹⁰

Summary

Summary

NA62 studies of rare K^+ decays providing new precision measurements:

- Study of $K^+ \rightarrow \pi^+ \gamma \gamma$: test of Chiral perturbation theory (ChPT) [PLB 850 (2024) 138513]
 - $\hat{c} = 1.144 \pm 0.069_{\text{stat}} \pm 0.034_{\text{syst}}$
 - $\mathscr{B}(K^+ \to \pi^+ \gamma \gamma, \text{ChPT}\mathcal{O}(p^6)) = (9.61 \pm 0.15_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-7}$
- Study of $K^+ \to \pi^+ \pi^0$, $\pi^0 \to e^+ e^-$ [Preliminary result: spring 2024]
 - $\mathscr{B}_{NA62}(\pi^0 \to e^+ e^-(\gamma), x > 0.95) = (5.86 \pm 0.37) \times 10^{-8}$
 - Precision comparable with previous measurement, statistically dominated
 - In agreement with latest theoretical expectations
- 2 candidate events with tagged ν in $K^+ \rightarrow \mu^+ \nu$ decays

<u>Status of Golden Modes $K \rightarrow \pi \nu \bar{\nu}$ </u>

- NA62: worlds best measurements of $K^+ \to \pi^+ \nu \bar{\nu}$ with RUN1 data. First RUN2 data result being finalised.
 - NA62 will provide the final measurements of rare K^+ decays for the foreseeable future.

• Consistent with previous measurements with precision improved by factor 3, statistically dominated.

• KOTO continuously improving sensitivity to $K_L \to \pi^0 \nu \bar{\nu}$ with good prospects for future KOTO-2 programme.

Supplemental

$K \rightarrow \pi \nu \bar{\nu}$: Beyond the Standard Model

- **Green:** CKM-like flavour structure
 - Models with Minimal Flavour Violation
- **Blue:** new flavour-violating interactions where LH or RH currents dominate
 - Z' models with pure LH/RH couplings
- **Red:** general NP models without above constraints

Joel Swallow

Vulcano24

• Grossman-Nir Bound: model-independent relation

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Signal Selection

- Reconstruct K^+ and π^+
- $K \pi$ matching & reconstruct vertex
 - CDA, timing, vertex in FV
- π^+ Identification (μ^+ rejection)
 - RICH (Calorimeters) performance:
 - $\varepsilon(\pi^+ \text{ID}) \approx 0.85(0.82)\%$
 - $P(\mu^+ \Rightarrow \pi^+ \text{misID}) \approx 3 \times 10^{-3}($ $10^{-5})$
- Photon vetos & Multi-track rejection
 - $\pi^0(\rightarrow\gamma\gamma)$ rejection inefficiency $\sim 10^{-8}$

- Kinematics: $m_{\rm miss}^2$ vs p_{π^+} :
 - Selection optimised in bins of p_{π^+}

Background Studies [2018 data]

- Upstream bkg. dominated by decays upstream of FV
 - New collimator installed (June 2018) blocks many upstream decays
- Joel Swallow Vulcano24 • Strict anti-upstream rejection loosened.

Before & after new final collimator in 2018

		Background	Subset S1	Subset S2
		$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.0
	the	$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.0
	K^+ decays in .	$\pi^+\pi^-e^+ u$	0.10 ± 0.03	0.41 ± 0.1
8		$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.0
(10.9±1.1)		$\pi^+\gamma\gamma$	< 0.01	< 0.01
(32.4±3.2)		$\pi^0 l^+ u$	< 0.001	< 0.001
		Upstream	$0.54\substack{+0.39 \\ -0.21}$	$2.76\substack{+0.90 \\ -0.70}$
		Total	$1.11\substack{+0.40 \\ -0.22}$	$\left \begin{array}{c} 4.31 ^{+0.91}_{-0.72} \end{array} \right.$

[Fraction of 2018 data sample: S1 = 20%, S2 = 80%]

• Primary backgrounds (from kinematic tails) evaluated with data-driven procedures.

[JHEP 06 (2021) 093]

$$\pm 0.09_{syst}$$
 × 10⁻¹¹ at 68 % CL

Study of $K^+ \to \pi^+ \pi^0$, $\pi^0 \to e^+ e^-$

- Common Signal & Background Selection:
 - Vertex from 3 (in-time) charged tracks
 - Kinematics (momentum & vertex position)
 - PID: $\pi^+ e^+ e^-$ (using LKr E/p : <0.9 for π^+ vs 0.9-1.1 for e^+)
 - $m_{ee} > 130 \,\mathrm{MeV}/c^2$ (>140 for normalisation).
- Normalisation:
 - Acceptance: $A_{\pi ee} = (4.70 \pm 0.01_{\text{stat}})\%$
 - Selected events: $N_{\pi ee} = 12160$ (purity>99.9%)
 - Effective number of kaon decays: $N_K = (8.62 \pm 0.08_{\text{stat}} \pm 0.26_{\text{ext}}) \times 10^{11}$
 - With external uncertainty from norm. BR: $\mathscr{B}(K^+ \to \pi^+ e^+ e^-) = (3.00 \pm 0.09) \times 10^{-10}$

35

Tagged neutrinos at NA62: selection

NA62 preliminary

^ [mm]

Tagged neutrinos at NA62: Expectations

• $N_{signal}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$

- Backgrounds:
 - $N_{ho}^{exp}(\text{mis-reco } K^+) = 0.0014 \pm 0.0007_{\text{stat}} \pm 0.0002_{\text{svst}}$
 - $N_{bo}^{exp}(\text{pileup} + K^+ \to \mu^+ \nu) = 0.04 \pm 0.02_{\text{stat}} \pm 0.01_{\text{syst}}$

Probability for total event yield $N_{events}^{exp} = 0.2694$

- for 0 data events p = 0.7638
- for 1 data event p = 0.2058
- for 2 data events p = 0.0277.

NA62 Run2

- NA62 technique is firmly established.
- Run2 target $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$ measurement: $\mathscr{O}(15)\%$ precision.
 - 4th GTK (Kaon beam tracker) & rearrange beam line elements around GTK achromat. • New upstream veto & veto hodoscope upstream of decay volume.

 - Additional veto detector at end of beam-line.
 - Intensity increased by $\sim 30\%$ with respect Run1. Matched by trigger updates.
- Improvements to the trigger have led to smaller trigger downscaling factors for multi-track triggers: more data available for rare decays and CLFV/LNV searches.

