Latest results on rare *B* decays from Belle II and LHCb

Vincenzo Vagnoni

INFN Bologna and CERN

Vulcano Workshop 2024 Frontier Objects in Astrophysics and Particle Physics

Two very different accelerators

Electrons $\Upsilon(1S)$ Belle II **SuperKEKB** Detecto Hadrons) [nb] **Off-resonance** HER (e) 7.0 GeV $\Upsilon(2S)$ On-resonance $\Upsilon(3S)$ $\sigma(\mathrm{e^+e^-})$ Generator $\Upsilon(4S)$ LER (e⁺) 4.0 GeV continuum background Dampir 10.0010.02 10.34 10.37 10.54 10.58 Ring Electron Positrons e⁺e⁻ Center-of-Mass Energy [GeV] Source

- *pp* collisions at 13 TeV
- *b*-quarks produced by gluon fusion
- Highly boosted topology
- $\sigma_{bb} = 100 \,\mu b$

- e^+e^- energy-asymmetric collisions at 10.58 GeV
- $B\overline{B}$ produced via Y(4S)
- Asymmetric beam energy to boost to *B* mesons
- $\sigma_{bb} = 1.1 \text{ nb}$

10.62

Two very different experiments with same goal LHCb Belle II

- Forward spectrometer
- Taking data since 2010, collecting ~10 fb⁻¹ so far
 - 4x10¹² *bb* pairs
 - B_u (40%), B_d (40%), B_s (10%), B_c and *b*-baryons (10%)

- Taking data since 2019, collecting ~360 fb⁻¹ in Run 1
 - 370 million BB pairs
- Resumed data-taking this year after ~1.5y long shut-down

Roughly 1 fb⁻¹ LHCb = 1000 fb⁻¹ Belle II

"Indirect" searches for New Physics

- General decomposition of a transition amplitude in terms of couplings and scales
- New-physics virtual particles of arbitrarily large mass can enter loops in Feynman diagrams and produce observable effects → the existence of particles with much larger masses than the energy made available by the LHC could be unveiled

Why studying rare decays?

 Decays characterised by tiny branching fractions in the SM are excellent laboratories to look for new-physics effects

$$A = A_0 \left[\begin{array}{c} c_{\rm SM} \frac{1}{M_{\rm W}^2} + c_{\rm NP} \frac{1}{\Lambda^2} \right]$$

- In particular, flavour-changing neutral-current (FCNC) processes cannot proceed at tree level in the SM, hence higher order diagrams are needed → strong suppression
 - And further suppressions may arise from additional dynamical mechanisms

Classics: measurement of $B \rightarrow \mu^+\mu^-$ decays

• Highly suppressed in the SM

 FCNC- and helicity-suppressed, proceed via Z penguin and W box → precise SM prediction

$$\begin{array}{lll} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &=& (3.66 \pm 0.14) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &=& (1.03 \pm 0.05) \times 10^{-10} \end{array} \text{ Jher 10 (2019) 232} \end{array}$$

Latest results

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= \left(3.09 ^{+0.46}_{-0.43} ^{+0.15}_{-0.11} \right) \times 10^{-9} & \text{Sensitivity approaching} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 2.6 \times 10^{-1} \text{at } 95\% \text{ CL} & \text{SM uncertainty} \end{split}$$

• Great prospects with Run-3 data!

Search for the $B^0_s ightarrow \mu^+ \mu^- \gamma$ decay

Photon reconstructed in the final state. Analysis performed in bins of q^2 using Run 2 data

LHCb-PAPER-2023-045

Loop suppressed $b \rightarrow s\mu^+\mu^-$ transitions are sensitive to new particles 10^{-6} LHCb direct (5.4 fb⁻ LHCb The photon in LHCb indirect (9 fb⁻¹ [Ge¹ 10^{-7} SM (Single pole) the final state SM (Dispersion) $dB(B_s^0 \rightarrow \mu^+ \mu^- \gamma)/dq^2$ SM (SCET) lifts the helicity J/ψ SM (HQS + LQCD) 10^{-8} ψ(2S) suppression 10^{-9} 10^{-10} 10^{-11} 10^{-12} 10 20 30 First limits with full final state reconstruction $q^2 [GeV^2/c^4]$ and the first limit at low dimuon mass $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) < 4.22 \times 10^{-8}, \ m(\mu^+ \mu^-) \in [m_\mu, \ 1700] \ \text{MeV}/c^2,$ $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) < 7.73 \times 10^{-8}, \ m(\mu^+ \mu^-) \in [1700, \ 2880] \ \text{MeV}/c^2,$ $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) < 4.24 \times 10^{-8}, \ m(\mu^+ \mu^-) \in [3920, \ m_{B_s^0}] \ \text{MeV}/c^2,$

$b \rightarrow s\ell^+\ell^-$ transitions and LFU tests

- Measure ratios of decay rates to muons and electrons: LFU test
- Theoretically very clean in the SM
 - Observation of non-LFU would be a clear sign of new physics
- Mostly measured with the ratios $R_{\kappa} = \mathfrak{B}(B^+ \rightarrow K^+ \mu^+ \mu^-) / \mathfrak{B}(B^+ \rightarrow K^+ e^+ e^-)$ $R_{\kappa^*} = \mathfrak{B}(B^0 \rightarrow K^{*0} \mu^+ \mu^-) / \mathfrak{B}(B^0 \rightarrow K^{*0} e^+ e^-)$
- 3σ -ish level from SM not long ago triggered wide interest in the theory community, but later reabsorbed
- Still, very interesting physics playing a central role in the quark-flavour physics programme!

Comprehensive analysis of local and nonlocal amplitudes in the $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay

- Fit model that combines the local and nonlocal amplitudes across the full q² spectrum
- Model includes all known vector resonances and two-particle contribution from $D^{(*)}\bar{D}^{(*)}$ and $\tau^+\tau^-$ loops

LHCb-PAPER-2024-011 arXiv:2405.17347

There is a preference for a value of C₉ shifted from the SM expectation; no deviation in C₁₀ Observation of the rare decay $J/\psi
ightarrow \mu^+\mu^-\mu^+\mu^-$

• Decay dominantly through finalstate radiation of a virtual photon

- Limit from BES III, measurement from CMS with handful of signal events
- Most precise measurement by LHCb with hundreds of signals

LHCb-CONF-2024-001

FCNC $b \rightarrow sy$ transition

 $B \rightarrow K^* \gamma$

- First radiative penguin to be measured at Belle II
- Branching fractions \mathcal{B} have large theoretical uncertainties (~20%)
- CP (A_{CP}) and isospin (Δ_{+0}) asymmetries theoretically clean (cancellation of form factors)

$$\Delta A_{CP} = A_{CP}(B^0 \to K^{*0}\gamma) + A_{CP}(B^+ \to K^{*+}\gamma)$$

$$\Delta_{+0} = \frac{\Gamma(B^0 \to K^{*0} \gamma) - (B^+ \to K^{*+} \gamma)}{\Gamma(B^0 \to K^{*0} \gamma) + (B^+ \to K^{*+} \gamma)}$$

SM prediction: $\Delta_{+,0}$ range from 2-8% with an uncertainty ~2%

Branching fractions

A _{CP}
$B[B \rightarrow K^* y] = (4.12 \pm 0.08 \pm 0.11) \times 10^{-5}$
$\boldsymbol{B}[B^+ \rightarrow K^{*+} y] = (4.04 \pm 0.13 \pm 0.13) \times 10^{-5}$
$B[B^{0} \rightarrow K^{*0}y] = (4.16 \pm 0.10 \pm 0.11) \times 10^{-5}$

$A_{CP}[B^0 \to K^{*0}y] = (-3.2 \pm 2.4 \pm 0.4)\%$
$A_{CP}[B^+ \rightarrow K^{*+}y] = (-1.0 \pm 3.0 \pm 0.6)\%$
$A_{CP}[B \rightarrow K^* y] = (-2.3 \pm 1.9 \pm 0.3)\%$

Asymmetries

Consistent with previous measurements and SM

Similar sensitivity to Belle due to improved K_s efficiency and ΔE resolution FCNC $b \rightarrow d\gamma$ transition

 $\rightarrow \gamma \gamma$

B⁰

Theoretically the \mathcal{B} of this decay mode is expected to be $(1.4^{+1.4}_{-0.8}) \times 10^{-8}$

Previous measurements

Experiment	Integrated Luminosity $(\int \mathcal{L} dt)$	Limit @ 90 C.L.
L3	73 pb^{-1}	3.9×10^{-5}
Belle	$104 {\rm ~fb^{-1}}$	6.2×10^{-7}
Babar	$426 \ {\rm fb}^{-1}$	3.2×10^{-7}

13

14

 $B^{\cup} \rightarrow \gamma \gamma$ Results

Belle

Belle II

Combined

 $11.0_{-5.5}^{+6.5}$ signal events corresponding to 2.5σ significance Since no significant signal set 90% C.L. limits Really close to SM expectation

 $(1.7^{+3.7}_{-2.4} \pm 0.3) \times 10^{-8}$ < 7.4 × 10⁻⁸

 $\mathcal{B}(B^0 \to \gamma \gamma)$

(at 90% CL)

 $< 9.9 \times 10^{-8}$

 $< 6.4 \times 10^{-8}$

best upper limit with Belle II data

 $(5.4^{+3.3}_{-2.6} \pm 0.5) \times 10^{-8}$

 $(3.7^{+2.2}_{-1.8} \pm 0.7) \times 10^{-8}$

 $\mathcal{B}(B^0 \to \gamma \gamma)$

•	5 x improvement in limit with respect
	to BaBar (previous best result) BaBar
	had upward fluctuation

$B^+ \rightarrow K^+ \nu \bar{\nu}$

FCNC $b \rightarrow$ s transition

precise SM prediction: $\mathcal{B}(B^+ \rightarrow K^+ v \overline{v}) = (5.58 \pm 0.37) \times 10^{-6}$

NP scenarios

Light: axions PRD 102 (2020) 015023 dark scalars PRD 101 (2020) 095006 axion-like particles JHEP 04 (2023) 131 Heavy: Z' PLB 821 (2021) 136607 leptoquarks PRD 98 (2018) 055003

Previous limits one order of magnitude above SM expectation

arxiv: 2311.14647

First evidence of the $B^+ \rightarrow K^+ v \bar{v}$ process Average $_{1.3\pm0.4}$ ${ m SM}_{0.497\pm0.037}$ Belle II (362 fb^{-1} , combined) 2.3 ± 0.7 This analysis Belle II (362 fb⁻¹, hadronic) 1.1 ± 1.1 This analysis Belle II (362 fb⁻¹, inclusive) 2.7 ± 0.7 This analysis Belle II (63 fb⁻¹, inclusive) 1.9 ± 1.5 PRL127, 181802 Belle (711 fb⁻¹, semileptonic) 1.0 ± 0.6 PRD96, 091101 Belle (711 fb⁻¹, hadronic) 2.9 ± 1.6 PRD87, 111103 BaBar (418 fb⁻¹, semileptonic) 0.2 ± 0.8 PRD82, 112002 BaBar (429 fb⁻¹, hadronic) 1.5 ± 1.3 PRD87. 112005 2 8 0 4 6 10 $10^5 \times \text{Br}(B^+ \rightarrow K^+ \nu \bar{\nu})$

LHCb 2024

- The experiment recorded about 9 fb⁻¹ of luminosity in Run-1 and Run-2, and already 1.4 fb⁻¹ in the first few weeks of 2024 (Run-3), thanks to much higher instantaneous luminosity
- Run-3 prospects are to surpass in a single year the statistics of all previous runs!

LHCb Integrated Recorded Luminosity in pp by years 2010-2024

2024 data: *b*-decays with leptons and fully hadronic

 Also new purely software trigger in Run-3, with much improved efficiencies!

Future prospects

- European Strategy Update 2020: "The full physics potential of the LHC and the HL-LHC, including the study of flavour physics, ... should be exploited"
- LHCb Upgrade I was designed to collect 50 fb⁻¹ by end of Run 4, but there is the opportunity to operate the experiment until the end of HL-LHC
 - With this in mind, the LHCb Upgrade II detector is being designed to accumulate the maximum possible integrated luminosity
- The proposed baseline is to achieve 50 fb⁻¹ per year and reach at least 300 fb⁻¹ at the end of Run-6

LHCb Upgrade II in a nutshell

- Unique scientific programme with BSM discovery potential using unprecedented samples of B and D decays
- Furthermore, broad programme on spectroscopy, EWK precision measurements, top and Higgs physics, dark sector searches, heavy ions and fixed target, all made with a unique and fully instrumented forward acceptance

• Technology-wise, it provides an exciting technology roadmap with novel detectors and electronics

In conclusion

- Quark-flavour physics and rare decays are an extremely rich laboratory to look for physics beyond the SM
- LHCb is still analysing data from Run-1 and Run-2, and Belle II started significant analyses with Run-1 data
- Now the LHCb collaboration is focusing on Run-3, and the plan in 2024-25 is to integrate a luminosity that will triple the statistics from Run-1 and Run-2, and even more for hadronic decay modes
- A further upgrade of LHCb is planned for Run-5, increasing the luminosity by another order of magnitude, with the aim of squeezing the LHC to release all flavour physics results up to the next accelerator