#### **PADME: Status and prospects**

#### **Venelin Kozhuharov for the PADME collaboration** Faculty of Physics, Sofia University and Laboratori Nazionali di Frascati, INFN

#### XIX Vulcano Workshop on Frontier Objects in Astrophysics and Particle Physics 26 May – 1 June 2024 Ischia, Italy



ФОНД НАУЧНИ ИЗСЛЕДВАНИЯ



Istituto Nazionale di Fisica Nucleare

PRL 126 (2021) 14, 141801

ROOKHAVEN

FERMILAB 2018 DATA

FERMILAB 2019 + 2020 DATA

**MUON g-2 RESULTS** 

**Outline** 

#### PADME @ LNF •

- Present status
  - Prospects
- Conclusions

•



# **Techniques @ accelerators**

#### Fixed target



- Direct production (usually X-strahlung)
- Search for decays through event reconstruction (tracking)
- Production of secondary beam
  - Usually in a thick target
  - Searching for new particles in meson decays
  - M<sub>x</sub> limited by the meson mass, coupling sensitivity – by statistics

#### Beam dump



- Production: A'/a/h/?-strahlung, shower, absorption of secondaries
- Detection: everything is signal vs kinematics of the final state
  - The new particle has to survive the passage through the dump



#### e<sup>+</sup>e<sup>-</sup> colliders

- Associate production of new states
- Sensitivity depends on the resolution on invariant/missing mass of the final state



 $M_{\rm X}$ 

 Also searches through meson production and constrained initial state

# **Positron annihilation into new light particles**







MMiss<sup>2</sup> (MeV)

- Bremsstrahlung in the field of the target nuclei
  - Photons mostly @ low energy, background dominates the high missing masses
  - An additional lower energy positron that could be detected due to stronger deflection
- 2 photon annihilation
  - Peaks at  $M_{miss} = 0$
  - Quasi symmetric in gamma angles for  $E_{\gamma} > 50 \text{ MeV}$
- 3 photon annihilation
  - Symmetry is lost decrease in the vetoing capabilities
- Radiative Bhabha scattering
  - Topology close to bremsstrahlung



### LNF, INFN

#### where colliders were born ...







#### **Positron Annihilation into Dark Matter Experiment**









# **Calorimeters**

#### **ECAL: The heart of PADME**

- 616 BGO crystals, 2.1 x 2.1 x 23 cm<sup>3</sup>
- BGO covered with diffuse reflective TiO<sub>2</sub> paint
  - additional optical isolation: 50 100
    µm black tedlar foils
- Calibration at several stages:
  - BGO + PMT equalization with <sup>22</sup>Na source before construction
  - Cosmic rays calibration using the MPV of the spectrum
  - Temperature monitoring



#### **Small Angle Calorimeter (SAC)**

- 25 crystals 5 x 5 matrix, Cherenkov PbF<sub>2</sub>
- Dimensions of each crystal:  $3 \times 3 \times 14 \text{ cm}^{3}$
- 50 cm behind ECal
- PMT readout: Hamamatsu R13478UV with custom dividers
- Angular acceptance: [0,19] mrad

#### Nucl.Instrum.Meth.A 919 (2019) 89-97









### **Charged particle detectors**



- Three sets of detectors detect the charged particles from the PADME target (at  $E_{beam}$  = 550 MeV):
  - **PVeto**: positrons with 50 MeV <  $p_{e+}$  < 450 MeV
  - **HEPVeto**: positrons with 450 MeV  $< p_{e+} < 500$ MeV
- EVeto: electrons with 50 MeV < p<sub>e+</sub> < 450 MeV</li>
  96 + 96 (90) + 16 (x2) scintillator-WLS-SiPM RO
- channels
- Segmentation provides momentum measurement down to ~ 5 MeV resolution





Custom SiPM electronics, Hamamatsu S13360 3 mm. 25µm pixel SiPM Differential signals to the controllers, HV, thermal and current monitoring

- Online time resolution:  $\sim 2$  ns

JINST 19 (2024) 01, C01051

Offline time resolution after fine  $T_0$  calculation – better than 1 ns

## PADME RUN I and II

#### **Run I and PADME commissioning**

- started in Autumn 2018 and ended on February 25<sup>th</sup>
  - $\circ$  ~7 x 10<sup>12</sup> PoT recorded with secondary beam
  - PADME DAQ, Detector, beam, collaboration commissioning
  - Data quality and detector calibration
- PADME test beam data
  - July 2019, few days of valuable data
    - Certification of the primary beam
  - Detector performance/calibration checks
  - Primary beam with  $E_{beam} = 490 \text{ MeV}$

#### **RUN II: primary beam**

- July 2020
  - New environment/detector parameter monitoring and control system
  - Remote operation confirmation
- Autumn 2020:
  - A long data taking period with O(5x10<sup>12</sup>) e<sup>+</sup> on target

$$\circ$$
 E<sub>beam</sub> = 430 MeV



JINST 17 (2022) 08, P08032

### ML for double particle separation in ECal

#### PADME ECAL



Two photon showers in the ECAL



- AI to identify the number of pulses in a waveform
- Simple output up to five pulses
- Trained on 100 000 events





Time [ns]

#### Instruments 6 (2022) 4, 46



### **PADME RUN III**

# **Probing X17**





# Signal selection: $N_{2cl} = N_{e+e-} + N_{vv}$



- ECal based: two in-time clusters with two body kinematics
- Background estimation: ~ 4 %
- The measurement is N<sub>2cl</sub>/Flux (E<sub>beam</sub>)

• Flux = PoT



# Signal selection: selection efficiency





- Single hit identification threshold of 15 MeV
- Cluster reconstruction efficiency is stable over time
  - With the bad crystals excluded from the reconstruction

Geometrical efficiency (acceptance)



- Dominated by the cut on the outer radius of a cluster in the calorimeter
- Beam center drift limits the maximal R<sub>cut</sub>

## **Event selection**



JINST 19 (2024) 01, C01016

Timepix 3 array



- Matrix of 2 x 6 Timepix3 detectors
  each 256x256 pixels
- Operated in 2 modes:
  - $_{\circ}$  image mode, integrating
  - streaming mode, feeding ToT and ToA for each fired pixel

## **Positron flux measurement**





- PoT is primarily measured by an OPAL lead glass block downstream of the setup
- Additional detectors to control the PoT systematics
  - and to derive correction factors
  - Several testing campaigns
    - A few positrons -> clear 1e, 2e, etc. peak identification
    - O(2000) PoT cross-calibration with the BTF FitPix



- Higher energy runs
  - control of the NPoT systematics
  - 2 clusters selection stability



- Validation of the toy MC (and F<sub>pixel</sub> correction factor) with an independent measurement from BTF luminometer
- Correction uncertainty of the order of 1 %
  - Common to all the measurements

arXiv:2405.07203 [hep-ex]

# Signal yield: theoretical input



e<sup>-</sup> X

e<sup>-</sup>

Fernando Arias-Aragón, Luc Darmé, Giovanni Grilli di Cortona, Enrico Nardi  $d\sigma = \frac{d^3 p_X}{(2\pi)^3} \int \frac{d^3 k_A}{(2\pi)^3} \frac{(2\pi)^4}{8E_Y E_A E_B |v_A - v_B|} n\left(\vec{k}_A\right) |\mathcal{M}|^2 \delta^{(4)}(k_A + p_B - p_X)$ 

arXiv:2403.15387 [hep-ph] ,Accepted in PRL, Thanks to

- Line shape modification due to electron motion
  - Bound e<sup>-</sup> momentum changes the e+e- invariant mass
- Peak height decreases, width increases,
  S/B decreases
- n(k<sub>A</sub>) electron momentum density function
  - Theory: calculate it using Hartree-Fock
  - Experiment: X-ray determination of electron momentum density

Physica B 521 (2017) 361-364



<sup>[</sup>Phys. Rev. 176 (1968) 900]

### **Sensitivity estimation**

- Sensitivity depends on S/B and the uncertainty on the background determination
  - Statistical (N<sub>B</sub>), 47 points with O(10<sup>10</sup>) PoT,  $\Delta E = 0.75$  MeV
  - Systematics (e.g. N<sub>poT</sub>)
  - Background:  $N_B \sim 45000$  events per point
  - Signal acceptance



#### • Sources of systematics

- Relative PoT estimation O(0.5%)
- Acceptance 0.75%
- Beam energy spread 0.05 %
- Signal shape uncertainty
- Beam
- Time dependent ECal efficiency
- Beam energy uncertainty controlled by Hall probes < 10<sup>-3</sup>
- ECal calibration
- Normalization systematics
  - absolute PoT 5 %

## PADME MC sensitivity estimate for RUN III



- Expected 90% CL upper limits are obtained with the CLs method
  - modified frequentist approach, LEP-style test statistic
- Likelihood fits performed for the separate assumptions of signal + background vs background only

 $Q_{\text{statistics}} = -2 \ln (L_{s+b} / L_b)$ 

- Pseudo data (SM background) is generated accounting for the expected uncertainties of nuisance parameters + statistical fluctuations
- 150 Nuisance parameters:
  - POT of each scan point
  - Common error on POT (scale error)
  - Signal efficiency for each scan point
  - Background yield for each scan point
  - Signal shape parameters: signal yield
    @ a given X17 mass and g<sub>ve</sub>
  - Signal shape parameter: beam-energy spread

How to improve:

#### **Towards PADME RUN IV**



• The results from PADME RUN III will be dominated by PoT systematics, two clusters acceptance acceptance systematics



Exploit a different normalization channel which could possibly cancel part of the systematic effects

- Natural candidate:  $e^+e^- \rightarrow \gamma \gamma$ 
  - Same 2 body kinematics: similar ECal illumination, systematics due to bad ECal crystals largely cancels
- Back on the envelope estimation: need knowledge of  $N_{vv}$  at 0.5 % for each scanning point
  - $\circ$  σ(e<sup>+</sup>e<sup>-</sup> →γγ)<sub>E=300 MeV</sub> ~ 2 mb, Acc (e<sup>+</sup>e<sup>-</sup> →γγ) ~ 10 % ⇒ O(10k) γγ events per 10<sup>10</sup> PoT
    - Need 4 times higher statistics per scan point
  - Less scan points due to the widening of X17 lineshape because of the electronic motion
  - Higher intensity by a factor of 2
- Need good separation between charged and neutral final states

# **PADME** tagger

- A novel micromegas readout plane suggested
  - Rhomboidal pads for X and Y direction, decrease the mutual capacitance
- Variable HV depending on the distance from the beam center
  - Low HV in the center, measure the beam multiplicity
    - Additional control on the PoT
  - $\circ$   $\,$  Higher HV in periphery to ensure close to 100 % efficiency





#### Status

- Gas mixture:

Ar:CF<sub>4</sub>:i-C<sub>4</sub>H<sub>10</sub> = 88:10:2

- Readout SRS system with APV ASIC hybrid
  - An adapter card in preparation to allow APV25 to accept/record trigger signal
  - $\circ$   $\,$  Timing and event matching  $\,$
- PCBs under preparation, to be ready for assembly in July
- Readout exists, integration with PADME DAQ ongoing (online vs offline)
- Gas supplies premixed gas (7-10 days) vs gas mixer in BTFEH1

### Conclusions

- Dark photon analysis in RUN I/II data pushed forward thanks to application of ML methods for hit reconstructions in high rate environment
- X17 analysis advances
  - PoT determined with various cross-calibration procedures with uncertainty down to < 1 %</li>
  - Signal acceptance and background estimation under control with systematics O(1%)
- An example for a very successful cooperation between theory and experiment
  - Pushing the theory and an advancement of the field in general
- A major improvement to PADME setup before RUN IV
  - Precise  $e^+e^-$  /  $\gamma\gamma$  discrimination with a Micromegas tracker
  - Allow probing the full unexplored region for the X17 allowed parameter space