

Searches for dark messengers at NA62: a focus on hadronic final states

Tommaso Spadaro

Laboratori Nazionali Frascati INFN

XIX Vulcano Workshop - Ischia, Campania (Italy); May 31, 2024

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction

Search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Typically sensitive to MeV-GeV mediators, low couplings (FIPs) accessible (large statistics);

NP Particle	type	SM portal (dim ≤ 5)	PBC	decay channels ($m \lesssim 1 { m GeV}$)		
HNL (N_I)	fermion	$F_{\alpha I}(\bar{L}_{\alpha}H)N_I$	6-8	$\pi\ell, K\ell, \ell_1\ell_2\nu$		
dark Higgs (S)	scalar	$(\mu S + \lambda S^2) H^{\dagger} H$	4-5	ll	$2\pi, 4\pi, 2K$)
$\mathbf{axion}/\mathbf{ALP}$ (a)	peeudoscalar	$(C_{VV}/\Lambda)aV_{\mu\nu}\tilde{V}^{\mu\nu}$	9,11	$\gamma\gamma,\ell\ell$	$2\pi\gamma, 3\pi, 4\pi, 2\pi\eta, 2K\pi$	(thi
	pseudoscalai	$(C_{ff}/\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f$	10			(tal
dark photon (A'_{μ})	vector	$-(\epsilon/2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$	1-2	ll	$2\pi, 3\pi, 4\pi, 2K, 2K\pi$	J

• Dark Sector (SM-DM) portals typically probed:

Introduction

Search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Typically sensitive to MeV-GeV mediators, low couplings (FIPs) accessible (large statistics);

	/ 1	/				
NP Particle	type	SM portal (dim ≤ 5)	PBC	decay c	channels ($m \lesssim 1{ m GeV}$)	
HNL (N_I)	fermion	$F_{\alpha I}(\bar{L}_{\alpha}H)N_I$	6-8	$\pi\ell, K\ell, \ell_1$	$_1\ell_2\nu$	
dark Higgs (S)	scalar	$(\mu S + \lambda S^2) H^{\dagger} H$	4-5	ll	$2\pi, 4\pi, 2K$)
$\mathbf{axion}/\mathbf{ALP}$ (a)	pseudoscalar	$(C_{VV}/\Lambda)aV_{\mu\nu}\tilde{V}^{\mu\nu}$	9,11	~~ "	$2\pi \sim 3\pi 4\pi 2\pi n 2K\pi$	(this
	pseudosearar	$(C_{ff}/\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f$	10	, ,	2/17, 5/, 4/, 2///, 2///	(talk
dark photon (A'_{μ})	vector	$-(\epsilon/2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$	1-2	ll	$2\pi, 3\pi, 4\pi, 2K, 2K\pi$	J

• Dark Sector (SM-DM) portals typically probed:

At NA62, two operation modes, K and **beam-dump mode**, and two types of searches for NP particles:¹

- NP particle production in SM particle decays, e.g.: $K^+ \to \pi^+ a$ (with/without $a \to \ell \ell$)
- NP particle decay to SM particles, e.g.: $A' \to \ell \ell$

 $^1\mathrm{See}$ also talks by B. Döbrich and J. Swallow

ELE NOR

The NA62 experiment

- Fixed-target experiment at CERN SPS (north area).
- Main goal: study of ultra-rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay,
 - + Broad physics portfolio, including Kaon physics and dark-sector searches
- Two data-taking periods: 2016-18 (see $K^+ \to \pi^+ \nu \bar{\nu}$ analysis paper²), 2021-25 (Run 2, ongoing).

NA62 experiment in kaon mode

- 400 GeV/c primary p^+ beam impinges Be target, 10^{12} protons/s on spill 75 GeV/c secondaries (~ 6% K⁺) selected using magnetic achromat, **TAX** collimators
- 5 MHz K^+ decay-in-flight in 60 m long fiducial volume (FV)³;

- K⁺ tagged by **KTAG** and 3-mom. determined by **GTK**;
- Decay products' 3-mom. measured by **STRAW**, time measured by **CHOD** PID given by **LKr**, **MUV1**, **MUV2** and **RICH**;

 μ ID provided by **MUV3**;

• Photons can be vetoed by **LKr** and at large angles by 12 **LAV** stations or by **SAC/IRC** at small angles;

• Overall experimental time resolution reaches $\mathcal{O}(100)$ ps

³The beam and detector of the NA62 experiment at CERN. JINST **12** P05025 (2017), [±703.08501] = + (=) (\pm) (\odot)

Tommaso Spadaro (LNF) Searches for dark messengers at NA62: a focus on hadronic final sta

NA62 experiment in beam-dump mode

• target removed and TAX closed, KTAG and GTK not used:

NA62 experiment in beam-dump mode

- improved sweeping from magnets downstream of TAX, reduce background from penetrating particles
- Proton beam intensity ×1.5 of nominal;

Tommaso Spadaro (LNF) Searches for dark messengers at NA62: a focus on hadronic final sta

NA62 experiment in beam-dump mode

• two trigger lines for charged particles: $Q1/20 (\geq 1 \text{ hits in CHOD}), H2 (> 1 \text{ in-time hit in CHOD})$

- $N_{\text{POT}} = (1.4 \pm 0.28) \times 10^{17}$ protons on target (POT) collected in 2021; plan: $N_{\text{POT}} = 10^{18}$ in Run 2
- NP searches with ee and $\mu\mu$ in NA62 2021 BD sample published;⁴ today hadronic decays

⁴NA62 Collaboration *JHEP* 09 (2023) 035 [2303.08666]; [2312.12055]

Tommaso Spadaro (LNF) Searches for dark messengers at NA62: a focus on hadronic final sta

• Numerous possibilities for the messenger X being a dark photon (DP), dark scalar (DS), axion-like particle (ALP), ...

Dark messenger signal Monte Carlo

- Numerous possibilities for the messenger X being a dark photon (DP), dark scalar (DS), axion-like particle (ALP), ...
- \Rightarrow numerous production and decay channels:

DP	DS	ALP
$\pi^+\pi^-$	$\pi^+\pi^-$	$\pi^+\pi^-\gamma$
$\pi^+\pi^-\pi^0$		$\pi^+\pi^-\pi^0$
$\pi^+\pi^-\pi^0\pi^0$	$\pi^+\pi^-\pi^0\pi^0$	$\pi^+\pi^-\pi^0\pi^0$
		$\pi^+\pi^-\eta$
K^+K^-	K^+K^-	
$K^+K^-\pi^0$		$K^+K^-\pi^0$

- ALP: Primakoff (on-, off-shell), mixing with $P = \{\pi^0, \eta, \eta'\}, B^{\pm,0} \to K^{\pm,0,(\star)}a$
- DP: Bremsstrahlung, $P \to A'\gamma, V \to A'P$ $(V = \{\rho, \omega, \phi\})$
- DS: $B^{\pm,0} \to K^{\pm,0,(\star)}S$
- Altogether 36 combinations of production and decay channels studied

E - 000

Analysis strategy

Selection of two charged hadrons:

- 2 good quality STRAW tracks in coincidence with each other and the trigger
- Particle ID to select hadrons (LKr and MUV1-3), RICH for tagging K^+
- No in-time activity in LAV, SAV and ANTIO
- Decay vertex selected in a fiducial volume (FV), an upstream region defined as a control sample

Figure: Two-track vertices (no PID) and definition of fiducial volume and upstream region (red hatched area).

Analysis strategy

Selection of two charged hadrons:

- 2 good quality STRAW tracks in coincidence with each other and the trigger
- Particle ID to select hadrons (LKr and MUV1-3), RICH for tagging K^+
- No in-time activity in LAV, SAV and ANTIO
- Decay vertex reconstructed in FV

Search strategy:

- select neutral LKr clusters, reconstruction of γ , π^0 , η based on time and opening angle;
- dark messenger reconstructed from final states and extrapolation to TAX - definition of signal region (SR) in terms of primary vertex: CDA_{TAX} vs Z_{TAX}

Figure: $A' \rightarrow \pi^+\pi^-$ MC: control (CR) and signal (SR) regions.

- SR: ellipse center $\{Z_{\rm TAX},{\rm CDA}_{\rm TAX}\}=\{23\,{\rm m},0\,{\rm mm}\},$ semi-axes of $23\,{\rm m}$ and $40\,{\rm mm}$
- CR: CDA $_{\rm TAX}$ $< 150 \, {\rm mm}$ and $-7 \, {\rm m} < Z_{\rm TAX}$ $< 53 \, {\rm m}$
- both SR and CR kept masked during the analysis

Analysis sensitivity

• In a model-independent approach $BR_{X \to \pi^+ \pi^-} = 1,$ $N_{exp}(M_X, \Gamma_X) =$ $N_{POT} \chi_{pp \to X}(C_{ref}) P_{rd} A_{acc} A_{trig}$

- $\chi_{pp \to X}(C_{ref})$: messenger prod. probability for ref. coupling
- $P_{\rm rd}$: probability to reach NA62 FV and decay therein
- $A_{\text{acc}} A_{\text{trig}}$: signal selection and trigger efficiencies

Figure: Left: expected number of $S \to \pi^+ \pi^-$ selected events, for $g_{bs} = 10^{-4}$, BR = 1. Center: selection acceptance given a messenger decay in the FV. Right: Mass resolution of the reconstructed messenger.

• Distributions evaluated for all 36 combinations of production and decay channels

After masking SR and CR and lifting vetoes, two $\pi\pi$ events observed in data:

- 1 event with vertex upstream of FV, vetoed by ANTIO
- 1 event with vertex inside FV, not vetoed by ANTIO, vetoed by LAV

Background estimations with mix of data-driven and first-principle MC:

- "Combinatorial:" data-driven event overlay \rightarrow negligible
- Neutrino-induced: GENIE + PYTHIA + GEANT4 \rightarrow negligible
- "Prompt:" data-driven + GEANT4, inelastic interaction of halo μ
- "Upstream:" data-driven + GEANT4, particles selected by the GTK achromat

E SQC

- data control sample of halo μ , backward MC (PUMAS tool), unfolding for correct kinematics
- MC statistics equivalent to $N_{\rm POT} = 1.53 \times 10^{17}$ (exceeding the data stat.)
- $\pi\pi$ outside CR (in ANTI0 acceptance + no vetoes applied):
 - $N_{\text{exp}} = 1.8 \pm 1.4 \text{ vs } N_{\text{obs}} = 1$ (Upstream region)
 - $N_{\text{exp}} = 0.20 \pm 0.15 \text{ vs } N_{\text{obs}} = 1$ (FV)

- data control sample of halo μ , backward MC (PUMAS tool), unfolding for correct kinematics
- MC statistics equivalent to $N_{\rm POT} = 1.53 \times 10^{17}$ (exceeding the data stat.)
- $\pi\pi$ outside CR (in ANTI0 acceptance + no vetoes applied):
 - $N_{\text{exp}} = 1.8 \pm 1.4 \text{ vs } N_{\text{obs}} = 1$ (Upstream region)
 - $N_{\text{exp}} = 0.20 \pm 0.15 \text{ vs } N_{\text{obs}} = 1$ (FV)
- after applying full selection the prompt background expectations in CR and SR are below 10^{-4} in all channels

Table: Summary of expected number of prompt background events at 68% CL for all studied decay channels in CR and SR after full selection.

Channel	$N_{ m exp,CR} \pm \delta N_{ m exp,CR}$	$N_{ m exp,SR} \pm \delta N_{ m exp,SR}$
$\pi^+\pi^-$	$(5.7^{+18.5}_{-4.7}) \times 10^{-5}$	$(5.5^{+18.0}_{-4.5}) \times 10^{-5}$
$\pi^+\pi^-\gamma$	$(1.7^{+5.3}_{-1.4}) \times 10^{-5}$	$(1.6^{+5.2}_{-1.3}) \times 10^{-5}$
$\pi^+\pi^-\pi^0$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$
$\pi^+\pi^-\pi^0\pi^0$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$

- 3 sub-components observed in an "ANTIO-blind" control sample in the $Z_{\text{VTX}} m_{\pi\pi}$ plane:
 - 19 upstream interactions
 - 2 $K_S \to \pi^+ \pi^-$ candidates
 - 8 $K^+ \to \pi^+ \pi^+ \pi^-$, one π^+ lost (6 identified as $\pi^+ \pi^-$, 2 $\pi^+ \pi^- \gamma$)

Figure: Events not in ANTI0 acceptance or not vetoed by ANTI0 in $Z_{\rm VTX}$ – invariant mass plane. Solid lines indicate the FV. Dashed lines indicate the K_S 3σ mass window.

- 3 sub-components observed in an "ANTIO-blind" control sample in the $Z_{\text{VTX}} m_{\pi\pi}$ plane:
 - 19 upstream interactions
 - 2 $K_S \to \pi^+ \pi^-$ candidates
 - 8 $K^+ \to \pi^+ \pi^+ \pi^-$, one π^+ lost (6 identified as $\pi^+ \pi^-$, 2 $\pi^+ \pi^- \gamma$)
- upstream interactions: vetoed by ANTI0 acceptance and vertex location

Figure: Events not in ANTI0 acceptance or not vetoed by ANTI0 in $Z_{\rm VTX}$ – invariant mass plane. Solid lines indicate the FV. Dashed lines indicate the K_S 3σ mass window.

- 3 sub-components observed in an "ANTIO-blind" control sample in the $Z_{\text{VTX}} m_{\pi\pi}$ plane:
 - 19 upstream interactions
 - 2 $K_S \to \pi^+ \pi^-$ candidates
 - 8 $K^+ \to \pi^+ \pi^+ \pi^-$, one π^+ lost (6 identified as $\pi^+ \pi^-$, 2 $\pi^+ \pi^- \gamma$)
- upstream interactions: vetoed by ANTI0 acceptance and vertex location
- K_S candidates: 3σ window ($\pm 5.7 \,\mathrm{MeV}/c^2$) around m_{K_S} kept masked

Figure: Events not in ANTI0 acceptance or not vetoed by ANTI0 in $Z_{\rm VTX}$ – invariant mass plane. Solid lines indicate the FV. Dashed lines indicate the K_S 3σ mass window.

- 3 sub-components observed in an "ANTIO-blind" control sample in the $Z_{\text{VTX}} m_{\pi\pi}$ plane:
 - 19 upstream interactions
 - 2 $K_S \to \pi^+ \pi^-$ candidates
 - 8 $K^+ \to \pi^+ \pi^+ \pi^-$, one π^+ lost (6 identified as $\pi^+ \pi^-$, 2 $\pi^+ \pi^- \gamma$)
- upstream interactions: vetoed by ANTI0 acceptance and vertex location
- K_S candidates: 3σ window ($\pm 5.7 \,\mathrm{MeV}/c^2$) around m_{K_S} kept masked
- K^+ -induced background: simulated using selected single K^+ tracks, forced to decay as $K \to \pi^+ \pi^+ \pi^-$ in the FV

Figure: Events not in ANTI0 acceptance or not vetoed by ANTI0 in $Z_{\rm VTX}$ – invariant mass plane. Solid lines indicate the FV. Dashed lines indicate the K_S 3 σ mass window.

• Result outside CR/SR before ANTI0 acceptance:

Channel	$N_{\rm exp}\pm\delta N_{\rm exp}$	$N_{ m obs}$
$\pi^+\pi^-$	5.6 ± 2.8	6
$\pi^+\pi^-\gamma$	2.4 ± 1.2	2

• Result outside CR/SR after ANTI0 acceptance:

Channel	$N_{ m exp} \pm \delta N_{ m exp}$	$N_{\rm obs}$
$\pi^+\pi^-$	0.68 ± 0.34	1
$\pi^+\pi^-\gamma$	0.31 ± 0.16	0

• Background expectation in SR and CR:

Channel	$N_{ m exp,CR} \pm \delta N_{ m exp,CR}$	$N_{\rm exp,SR}\pm\delta N_{\rm exp,SR}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004

Figure: Expected background from $K_{3\pi}$ in the primary vertex Z vs CDA plane before applying ANTIO acceptance.

• Simulation performed also for K_{e4} and $K_{\mu4}$ decays \Rightarrow negligible contributions

Table: Expected number of background events (68% CL) in CR and SR. Minimum number of observed events $N_{\rm obs}$ for a background-only *p*-value above 5σ in SR and SR+CR (global significance, flat background in $m_{\rm inv}$ assumed).

Channel	$N_{\mathrm{exp,CR}} \pm \delta N_{\mathrm{exp,CR}}$	$N_{ m exp,SR} \pm \delta N_{ m exp,SR}$	$N_{\rm obs,SR}^{p>5\sigma}$	$N_{ m obs,SR+CR}^{p>5\sigma}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005	3	4
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004	3	5
$\pi^+\pi^-\pi^0$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$	1	1
$\pi^+\pi^-\pi^0\pi^0$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$	1	1
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$	1	1
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$	1	2
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$	1	1

• Search is background free **not only** at $N_{\text{POT}} = 1.4 \times 10^{17}$ but also in the future full Run 2 dataset of $N_{\text{POT}} = 10^{18}$

Final result and interpretation

0 events observed in all control and signal regions

Figure: The observed 90% CL exclusion contours in BC4 (left) and BC11 (right) benchmarks together with the expected $\pm 1\sigma$ and $\pm 2\sigma$ bands (theory uncertainty not included). Public tool ALPINIST⁵ used for the combination of the results from the individual production and decay channels. No standalone 90% CL exclusion for BC1 (dark photon).

 5 ALPINIST: Axion-Like Particles In Numerous Interactions Simulated and Tabulated. JHEP 07 (2022) 094; [2201.05170] \odot

Tommaso Spadaro (LNF) Searches for dark messengers at NA62: a focus on hadronic final sta

Conclusion

- Preliminary results on the search for production and decay of a dark-sector messenger from data collected by the NA62 experiment in beam-dump mode have been presented:
 - Analysis basically background free up to 10^{18} POT
 - Blind analysis up to opening of both control and signal region
 - No observation of new physics signals;
- Blind analyses to search for new-physics particle decays X → ℓ⁺ℓ⁻ and X → hadrons performed on the data collected in 2021 explore new regions of the parameter space;
- Searches for dark-sector particles decaying into semi-leptonic or di-gamma final states are in progress;
- Data-taking ongoing, new sample collected in 2023, 10¹⁸ POT in beam-dump mode expected by the LHC LS3 with interesting perspectives on dark photons, ALPs, dark scalars and HNLs.

Conclusion

- Preliminary results on the search for production and decay of a dark-sector messenger from data collected by the NA62 experiment in beam-dump mode have been presented:
 - Analysis basically background free up to 10^{18} POT
 - Blind analysis up to opening of both control and signal region
 - No observation of new physics signals;
- Blind analyses to search for new-physics particle decays X → ℓ⁺ℓ⁻ and X → hadrons performed on the data collected in 2021 explore new regions of the parameter space;
- Searches for dark-sector particles decaying into semi-leptonic or di-gamma final states are in progress;
- Data-taking ongoing, new sample collected in 2023, 10¹⁸ POT in beam-dump mode expected by the LHC LS3 with interesting perspectives on dark photons, ALPs, dark scalars and HNLs.

Thank you for your attention!

ELE NOR

Backup slides

Tommaso Spadaro (LNF) Searches for dark messengers at NA62: a focus on hadronic final sta

< □ > < 同 >

三日 のへの

Search for dark photons (DP)

Model of DP A' with kinetic mixing with the SM hypercharge: $\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu}B^{\mu\nu} \Rightarrow$ Two DP production mechanisms in the beam-dump setup (in TAX):

• Bremsstrahlung production: $p + N \rightarrow X + A'$

• meson-mediated production: $p + N \to X + M, M \to A' + \gamma(\pi^0)$, where $M \in \{\pi^0, \eta, \rho, \omega, ..\}$

Search strategy:

- $\mu^+\mu^-$ vertex reconstructed in FV;
- primary production vertex close to TAX.

Event selection:

- good quality tracks with timing in coincidence with each other and the trigger
- particle ID with LKr and MUV3
- no in-time activity in LAV
- extrapolation of di-lepton momentum to TAX definition of signal region (SR) in terms of primary vertex location: CDA_{TAX} and z_{TAX}

- SR: $6 < z_{\text{TAX}} < 40$ m and CDA_{TAX} < 20 mm;
- both SR and CR kept masked during the analysis

regions (SR) for $A' \to \mu\mu$.

Search for $A' \to \mu^+ \mu^-$ decay - data and MC comparison, CRs opened: $\mu^* \mu^i$

Figure: Data-MC comparison, SR closed.

Ischia, May 31, 2024 3 / backup

Search for $A' \to \mu^+ \mu^-$ decay - data and MC comparison, CRs and SR opened: $\mu^+ \mu^-$

Figure: Signal MC - data: 1 event observed - counting experiment with 2.4σ significance. Signal shape not taken into account for the significance.

 4 Search for dark photon decays to $\mu^{+}\mu^{-}$ at NA62. NA62 Collaboration. [2303.08666] < $\square \rightarrow < \bigcirc \rightarrow$

Tommaso Spadaro (LNF) Searches for dark messengers at NA62: a focus on hadronic final sta

Search for exotic (pseudo)scalar

Interpretation of $A' \to \mu \mu$ analysis as a search for ALP/scalar *a* produced in $B \to K^{(\star)}a$ decay:

Figure: Resulting exclusion @90% CL for (pseudo)scalar a with mass M_a and lifetime τ_a .

Search for dark photons $(A' \rightarrow ee)$

Search strategy:

- e^+e^- vertex reconstructed in optimized FV;
- primary production vertex close to TAX.

Event selection:

- good quality tracks with timing in coincidence with each other and the trigger
- optimized particle ID with LKr and MUV3
- no in-time activity in LAV and ANTIO
- extrapolation of di-lepton momentum to TAX definition of signal region (SR) in terms of primary vertex location: CDA_{TAX} and z_{TAX}

Figure: Signal MC and definition of control (CR) and signal regions (SR) for $A' \to ee.$

• SR:

ellipse centered at $z_{\text{TAX}} = 23 \text{ m}$, $\text{CDA}_{\text{TAX}} = 0$;

• both SR and CR kept masked during the analysis

Search for dark photons $(A' \rightarrow ee)$

Figure: Data no LAV/ANTIO, CR/SR closed.

 $\begin{tabular}{|c|c|c|c|c|c|} \hline Condition & $N_{\rm exp} \pm \delta N_{\rm exp}$ & $1-\eta$ \\ \hline e^+e^- PID & 59.9 ± 6.7 & $-$ \\ \hline e^+e^- PID, LAV \& ANTIO & 0.72 ± 0.72 & $0.012^{+0.020}_{-0.008}$ \\ \hline e^+e^- CR & 0.51 ± 0.51 & $0.008^{+0.018}_{-0.006}$ \\ \hline e^+e^- SR & 0.47 ± 0.47 & $0.008^{+0.018}_{-0.006}$ \\ \hline \end{tabular}$

Expected number of events in CR and SR:

• $N_{\rm bkg}^{\rm CR} = 0.0097^{+0.049}_{-0.009}$ 90%CL

•
$$N_{\rm bkg}^{\rm SR} = 0.0094^{+0.049}_{-0.009}$$
 90%CL

Search for dark photons $(A' \to \ell \ell)$

0 events observed in CR and SR:

Figure: Final result with upper limit @90% CL.

Figure: Resulting exclusion @90% CL from combined results of $\mu\mu$ and *ee* analyses.

Search for $A' \to \mu \mu$ - backgrounds details

Combinatorial background:

- background from random superposition of two uncorrelated halo muons;
- selected single tracks in a data sample orthogonal to the one used for the analysis;
- track pairs are artificially built to emulate a random superposition;
- each track pair weighted to account for the 10 ns time window → independent on the intensity;
- powerful statistical accuracy from combinatorial enhancement;

Prompt background:

- background from secondaries of muon interactions with the traversed material (hadron photo-production);
- muon kinematic distributions extracted from selected single muons in data (backwards MC);
- to correct the spread induced by the backward-forward process (straggling, MS), an unfolding technique is applied to better reproduce the data distributions;
- relative uncertainty of MC expectation $\sim 100\%.$

Prompt background negligible with respect to combinatorial (UL @90% CL is 30% of combinatorial)

Search for $A' \rightarrow \mu \mu$ - backgrounds details

Figure: ΔT before LAV veto is applied (CR, SR masked).

Figure: ΔT after full selection (CR, SR masked).

Search for $A' \to \mu \mu$ - details on observed event

Tommaso Spadaro (LNF) Searches for dark messengers at NA62: a focus on hadronic final sta

Ischia, May 31, 2024 12 / backup

Search for $A' \rightarrow \mu \mu$ - selection efficiency and signal yield

Meson-mediated production:

Bremsstrahlung production:

Combinatorial:

• Same technique as for $\mu\mu$ - negligible: $N_{\rm exp} < 9 \times 10^{-4}$

Prompt:

• Dominating for *ee*. Expected number of events estimated using rejection factors η for LAV, ANTIO, CR, SR obtained from dedicated MC.

Background before LAV veto (SR and CR masked)

Search for $A' \rightarrow ee$ - selection efficiency and signal yield

Meson-mediated production:

Bremsstrahlung production:

Tommaso Spadaro (LNF) Searches for dark messengers at NA62: a focus on hadronic final sta

Ischia, May 31, 2024 15 / backup

MC: DP (Brems) $\rightarrow \pi^+\pi^-$

Figure: Left: expected yield after full selection, assuming $\epsilon = 10^{-4}$ and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed new-physics state.