

Dark Matter Searches at the LHC

Vulcano 2024 Workshop 31st, May 2024

Claudia Seitz on behalf of ATLAS and CMS

Dark Matter

Compelling evidence from astrophysical observations for existence of non-luminous, gravitationally interacting matter

Strong gravitational lensing as observed by the <u>Hubble Space Telescope</u> in <u>Abell 1689</u>

Rotational curves of galaxies

- Assumption: DM can be produced in proton-proton collisions
 - ► DM does not interact with the detector

ATLAS detector

- Assumption: DM can be produced in proton-proton collisions
 - ► DM does not interact with the detector

ATLAS detector

- Assumption: DM can be produced in proton-proton collisions
 - ► DM does not interact with the detector

Presence of DM can be inferred due to a momentum imbalance in transverse plane when produced in association with particles "X"

ATLAS detector

- Assumption: DM can be produced in proton-proton collisions
 - ► DM does not interact with the detector

ATLAS detector

How are we trying to find DM at the LHC?

 $E_{T}^{miss} + X$

Resonance searches

Dark QCD: emerging jets

- Several ways of approaching this issue
 - Signature driven
 - > Conventional: known SM particles w/o E_T^{miss}
 - Unconventional: Dark QCD, semi visible or emerging jets,
 - ► Model driven
 - start from a specific theory prediction \Rightarrow design and optimize for a specific model
- ► All these strategies are followed at the LHC

How are we trying to find DM at the LHC?

 $E_{T}^{miss} + X$

Resonance searches

Dark QCD: emerging jets

- Several ways of approaching this issue
 - Signature driven
 - ► Conventional: known SM particles w/o E_T^{miss}
 - Unconventional: Dark QCD, semi visible or emerging jets,
 - ► Model driven
 - start from a specific theory prediction \Rightarrow design and optimize for a specific model
- > All these strategies are followed at the LHC

New summary reports: ATLAS: arxiv:2403.09292 and CMS: arxiv:2405.13778

Signature driven: Simplified dark matter models

- ► WIMP model for DM production at colliders
- Production of new mediator

- ► Small set of parameters:
 - > Type of mediator: vector, axial-vector, scalar or pseudo scalar
 - \blacktriangleright Masses: m_{med} , m_{χ}

 \blacktriangleright Mediator decays into two Dirac fermion dark matter particles χ , which escape detection

> Couplings: $g_{q/1}$ (SM (quarks/leptons) and mediator), g_{χ} (mediator and DM)

Vector and Axial-Vector

Signature: initial state radiation (jet, photon, W, Z) + E_T^{miss}

Visible resonance

Signature: di-jet, di-photon, di-lepton resonances

arxiv:2405.13778 Phys. Rev. D 103 (2021) 112006

JHEP 05 (2020) 033

Vector and Axial-Vector

Signature: initial state radiation (jet, photon, W, Z) + E_T^{miss}

arxiv:2405.13778

Phys. Rev. D 103 (2021) 112006

JHEP 05 (2020) 033

Comparing LHC results with direct detection

- ► Vector mediator
- ► spin-independent (SI)
- > DD limits enhanced by the nucleon number

DM coupling $g_{\chi} = 1$ quark coupling $g_q = 0.25$ lepton coupling $g_l = 0$

Caveat: can only compare results for a specific model and set of parameters

arxiv:2405.13778

Comparing LHC results with direct detection

> Axial-vector mediator ► spin-dependent (SD) ➤ no enhancement DM coupling $g_{\chi} = 1$ quark coupling $g_q = 0.25$ lepton coupling $g_l = 0$

Caveat: can only compare results for a specific model and set of parameters

arxiv:2405.13778

DD/ID observed exclusion 90% CL Astropart. Phys. 90 (2017) 85 Phys. Rev. Lett. 118 (2017) 251301 IceCube (tt) JCAP 04 (2016) 022

Scalar and Pseudoscalar: $(t\bar{t} + tj + tW) + DM$

- Signature: $(t\overline{t} + tj + tW) + E_T^{miss}$
- Exploit dominant top quark/W boson decay modes
 - > zero, one (e/mu), and two lepton (e/mu) final states
 - ▶ number of b-jets =1 (tj + tW) and =2 $(t\bar{t})$
- > Exploit discriminating variable to separate signal and background $\blacktriangleright E_T^{miss}$ or neural network outputs

EXO-22-014 arxiv:2404.15930

Scalar and Pseudoscalar: $(t\bar{t} + tj + tW) + DM$

- Signature: $(t\overline{t} + tj + tW) + E_T^{miss}$
- Exploit dominant top quark/W boson decay modes
 - > zero, one (e/mu), and two lepton (e/mu) final states
 - ► number of b-jets =1 (tj + tW) and =2 ($t\bar{t}$)
- Exploit discriminating variable to separate signal and background
 E_T^{miss} or neural network outputs

► Overall strategy

- Design dedicated orthogonal signal regions for specific signal topologies
 - Estimate SM backgrounds from simulation and data control regions
 - Extrapolate and test in Validation regions
- Statistically combine all SRs and CRs for final result

EXO-22-014 arxiv:2404.15930

Various final states have differing sensitivity: 0 lepton

- -

Results

1 lepton 2 lepton

EXO-22-014 <u>arxiv:2404.15930</u>

Results

Various final states have differing sensitivity: 0 lepton

1 lepton

2 lepton

 \rightarrow Combination of all three

EXO-22-014 <u>arxiv:2404.15930</u>

Results

EXO-22-014 arxiv:2404.15930

► Idea: strongly interacting dark sector → Dark QCD Production of dark quarks -> leading to dark hadron shower = SM hadrons + stable dark hadrons (invisible DM candidate)

2405.13778
2
ay

- ► Idea: strongly interacting dark sector → Dark QCD
 - \blacktriangleright Production of dark quarks \rightarrow leading to dark hadron shower
 - = SM hadrons + stable dark hadrons (invisible DM candidate)
 - Emerging jets
 - Jets with displaced constituents characterized by $c\tau_{dark}$

Semi-visible jets

Jets characterized by fraction of energy carried by $DM = R_{inv}$

2405.13778
1
_
1 1
1
ay

► Idea: strongly interacting dark sector → Dark QCD \blacktriangleright Production of dark quarks \rightarrow leading to dark hadron shower = SM hadrons + stable dark hadrons (invisible DM candidate)

- Semi-visible jets
 - Jets characterized by fraction of energy carried by $DM = R_{inv}$

2405.13778	3
2	
ay	

► Idea: strongly interacting dark sector → Dark QCD \blacktriangleright Production of dark quarks \rightarrow leading to dark hadron shower = SM hadrons + stable dark hadrons (invisible DM candidate)

arxiv:

<u>2405.13778</u>	
2	
_	
< l	
>	
ay	

Model driven: 2HDM+a

> Type-II two Higgs doublet model + additional pseudo scalar mediator a that couples to DM \rightarrow UV complete theory with resonant enhancement of charged heavy Higgs production

two charged heavy Higgs bosons H±

Analysis Specific Assumptions:

•
$$m_x = 10 \text{ GeV}, y_x = 1$$

•
$$\lambda_3 = \lambda_{P1} = \lambda_{P2} = 3$$

after fixing parameters

to match existing constraints

- ► Free parameters:
 - ► m_a
 - $\succ M_A = M_H = M_{H\pm}$
 - > $\tan \beta$: ratio of the two Higgs doublet vevs
 - $\succ \sin \theta$: mixing between CP odd states a and A

► Large signature space with (pretty much) everything an experimentalist could wish for

> Large signature space with (pretty much) everything an experimentalist could wish for

mono-jet + E_T^{miss}

mono-H/Z/ γ + E_T^{miss}

 $tW + E_T^{miss}$

 $t\bar{t}/b\bar{b} + E_T^{miss}$ (or 4 t/4b)

mono-jet + E_T^{miss} $-mono-H/Z/\gamma + E_T^{miss}$ Z/hH/A

What drives the sensitivity to the model?

> Large signature space with (pretty much) everything an experimentalist could wish for

2HDM+a: parameter landscape • • • • • • • • • • • •

$$\tan \beta \quad \sin \theta = \begin{cases} 0.35\\ 0.7\\ m_a \end{cases}$$
$$m_A = 600 \ GeV$$

$$\tan \beta$$

 m_A

$$\sin \theta = \begin{cases} 0.35\\ 0.7\\ m_a\\ \tan \beta = 1 \end{cases}$$

.

2HDM+a: parameter landscape $\sin \theta = 0.35$

2HDM+a, Dirac DM, sin θ = 0.35, m_y = 10 GeV, g_y = 1, m_A = m_H = m_{H±} = 600 GeV

29

2HDM+a, Dirac DM, $\sin\theta = 0.35$, $m_y = 10$ GeV, $g_y = 1$, $m_a = m_H = m_{H_{\pm}}$, $m_a = 250$ GeV

2HDM+a: parameter landscape $\sin \theta = 0.7$

 $\tan\beta$ m_A

2HDM+a, Dirac DM, $\sin\theta = 0.7$, $m_y = 10 \text{ GeV}$, $g_y = 1$, $m_A = m_H = m_{H\pm} = 600 \text{ GeV}$

arXiv:2306.00641

2HDM+a, Dirac DM, $\sin\theta = 0.7$, $\tan\beta = 1$, $m_{y} = 10$ GeV, $g_{y} = 1$, $m_{A} = m_{H} = m_{H\pm}$

mono-jet + E_T^{miss}

Are we missing something?

> Large signature space with (pretty much) everything an experimentalist could wish for

Non-resonant $b\bar{b} + E_T^{miss}$

- > At high tan β production cross section of this process is enhanced
- Events categorized by $E_T^{miss} > 200$ GeV number of b-jets: 1b or 2b

► Discriminating variables:

CMS-PAS-SUS-23-008

Main backgrounds estimated in control regions

Resonant $t\bar{t}$ production

- ► Neutral bosons with $m_{H/A} > 2m_{t\bar{t}}$ decay pre-dominantly to $t\bar{t} \rightarrow resonance peak$
- ► Interference with the SM leads to a non-trivial di-top invariant mass distribution $m_{t\bar{t}}$
 - Peak-dip structure strongly model dependent
 - ► Needs dedicated strategy to implement the likelihood for interpretation

Resonant $t\bar{t}$ production

- ► Neutral bosons with $m_{H/A} > 2m_{t\bar{t}}$ decay pre-dominantly to $t\bar{t} \rightarrow resonance peak$
- ► Interference with the SM leads to a non-trivial di-top invariant mass distribution $m_{t\bar{t}}$
 - Peak-dip structure strongly model dependent
 - Needs dedicated strategy to implement the likelihood for interpretation
- > Aim: reconstruct proxy for $m_{t\bar{t}}$ distribution

- ► Interference with the SM leads to a non-trivial di-top invariant mass distribution $m_{t\bar{t}}$

> Aim: reconstruct proxy for $m_{t\bar{t}}$ distribution

Summary and Outlook

- Large number of results finalized using the full Run 2 LHC dataset
 - Exploration of vast variety of final states
 - Extensive studies of various models and interpretations
 - Relative importance of the various processes can change quickly when model parameters change \rightarrow always check assumptions
 - Colliders offer a unique opportunity in addition to DD and ID DM searches

- > Much more to come with the data taking years ahead
 - the theory modeling,

More luminosity, upgraded detectors, new analysis techniques, improvements in

BACKUP

Vector/Axial-vector

Dependence of coverage on the different coupling scenarios

.

Neural Network in DL region trained on:

11, 2 b-tag

 ≥ 2

= 1

 ≥ 2

=1

 ≥ 1

- 1b: opening angle between the two leptons and the two-lepton system and MET, ... - 2b: variables related to reconstruction of the ttbar system

EXO-22-014

.

Comparison of scalar/pseudo-scalar results with direct/indirect detection

limited sensitivity from DD experiments

2HDM+a: parameter landscape

0.35 $\sin\theta = \zeta$ $\tan\beta$ $m_A = 600 \ GeV$

low tan β \rightarrow preferred coupling of A/a to up-type quarks

> high tan β -> preferred coupling of A/a to down-type quarks and leptons

$$\sin \theta = \begin{cases} 0.35\\ 0.7\\ m_a\\ \tan \beta = 1 \end{cases}$$

- \rightarrow decays of the **a** into $t\bar{t}$
 - kinematically forbidden

- ► Highlight dependence on pseudo-scalar mass hierarchy
- \blacktriangleright sin θ chosen for low and almost maximal mixing between a and A

2HDM+a: landscape: main contributors

Can we say something about invisible Higgs decays?

Analysis	Best fit $\mathcal{B}_{H \to \mathrm{inv}}$	Observed upper limit	Expected upper limit
$t\bar{t}H$ comb.	$0.08^{+0.15}_{-0.15}$	0.38 ★	$0.30\substack{+0.13\\-0.09}$

Standard model predicts: $BR(h \rightarrow ZZ \rightarrow \nu\nu) \approx 0.1\%$

Current experimental limit 10.7% (7.7% expected)

Eur. Phys. J. C 83 (2023) 503

Phys. Lett. B 842 (2023) 137963

Analysis	Best fit $\mathcal{B}_{H \to \text{inv}}$	Observed 95% U.L.	Expected 9
$\text{Jet} + E_{\text{T}}^{\text{miss}}$	$-0.09^{+0.19}_{-0.20}$	0.329	0.383_
$\mathrm{VBF} + E_\mathrm{T}^\mathrm{miss} + \gamma$	$0.04^{+0.17}_{-0.15}$	0.375	0.346_
$t\bar{t} + E_{\mathrm{T}}^{\mathrm{miss}}$	0.08 ± 0.15	0.376	0.295_
$Z(\to \ell\ell) + E_{\rm T}^{\rm miss}$	0.00 ± 0.09	0.185	0.185_
$VBF + E_T^{miss}$	0.05 ± 0.05	0.145	0.103_
Run 2 Comb.	0.04 ± 0.04	0.113	0.080^{+0}_{-}
Run 1 Comb.	$-0.02^{+0.14}_{-0.13}$	0.252	0.265_
Run 1+2 Comb.	0.04 ± 0.04	0.107	0.077_

- ► Idea: strongly interacting dark sector → Dark QCD
 - \blacktriangleright Production of dark quarks \rightarrow leading to dark hadron shower
 - = SM hadrons + stable dark hadrons (invisible DM candidate)

Semi-visible jets

CMS-EXO-22-015 arxiv:240 J. Phys. G: Nucl. Part. Phys. 47 (Phys. Lett. B 848 (2024) 138324

large fraction of the tracks within jets emerge from displaced vertices

Searches need dedicated algorithms to identify these objects!

03.09292
90501 (2020)
Ļ
1
1 1
1
ay

