LHAASO observation of very high energy gamma-ray emission beyond 10 TeV from GRB 221009A

Xiao-Jun Bi (毕效军) Institute of High Energy Physics, CAS

Vulcano workshop, Ischia (Naples, Italy) May 26 - June 1, 2024

Outline

- Brief introduction of LHAASO
- LHAASO observation of GRB 221009A
- Implications of the observation
- Summary

LHAASO: Large High Altitude Air Shower Observatory

Where is LHAASO?

- Haizi Mountain, Sichuan province, China
- •Altitude 4410 m a.s.l.
- •Location: 29°21'27.6" N, 100°08'19.6" E.

LHAASO aerial image, 2021/12

ă mi

Area : 1.3km²

LHAASO detectors

KM2A The best UHE gamma-ray detector 4 TeV-20 TeV-10 PeV

WCDA The best VHE gamma-

ray survey detector 0.1 TeV-20 TeV

WFCTA+KM2A+WCDA The best cosmic ray detector 10 TeV-100 PeV

LHAASO detectors

Gamma-ray/cosmic ray discrimination

LHAASO for gamma-ray astronomy

- Features : Large FOV, Full duty cycle, Wide energy, High sensitivity
- Important for: sky survey, extended sources, transient sources

LHAASO important results

GRB 221009A @FOV of LHAASO

GRB 221009A is well observed by LHAASO at a favorite zenith angle!

FOV

Zenith angle vs Time

GRB 221009A: A very rare event

z=0.151 volume ~ 1 Gpc^3

GRB221009 at LHAASO-WCDA

- High statistics: >60,000 photons above 0.2TeV (LHAASO-WCDA)
- The whole process of onset and fade of TeV afterglow is recorded. The onset of TeV afterglow is observed for the first time.
- It is also the first time that a GRB is seen by an extensive air shower detector

4-segement Power-law

Unusual Fast rise: energy injection ?

- **Slow rise:** Favor ISM environment?
- Peak time: The bulk Lorentz factor of 440.
- **Slow decay:** Electron SED index -2.1
- Fast decay: A jet break at the earliest time!

Unexpected SED evolution

The SED become harder as time increasing. This is unexpected from standard afterglow model!

KM2A at higher energies

WCDA+KM2A SED (observed)

SED function: log-parabola

LHAASO coll. Science Advances,9: eadj2778 (2023)

SED function: Power-law+Ecut

EBL absorption

Alberto Saldana-Lopez^(a),^{1,2*} Alberto Domínguez^(a),^{2*} Pablo G. Pérez-González^(a),³ Justin Finke^(a),⁴ Marco Ajello^(a),⁵ Joel R. Primack^(a),⁶ Vaidehi S. Paliya^(a) and Abhishek Desai^(a)

Saldana-Lopez et al. 2021

WCDA+KM2A SED (EBL corrected)

Intrinsic SED using different EBL models

Implications of the LHAASO observation

- Constrain the EBL models
- Possible new physics scenarios
 - axion
 - LIV

Constraints on EBL distribution

Axion and axion-like particles

- Axion is introduced to solve the strong CP problems of the SM. It is an ideal cold dark matter candidate
- Axion couples with two photons
- In external magnetic field axion-gamma oscillates into each other

gamma-axion oscillation

• Oscillation between axion-gamma evade the absorption by EBL

Best fit of axion is not significant

Figure S2: The EBL absorption and the χ^2 of spectral fitting taking into account the ALP oscillation. Panel A shows EBL absorption models for very high-energy gamma-rays from a redshift of z = 0.151, taking into account the oscillation between gamma-rays and ALPs assuming $m_a = 10^{-7}$ eV and $g_{a\gamma}=(1 \text{ to } 6)\times 10^{-11} \text{ GeV}^{-1}$. The EBL model used is Saldana et al. 2021. Panel B shows $\Delta\chi^2$ relative to the minimum that fits the spectral energy distribution data as a function of the ALP $g_{a\gamma}$ for $m_a = 10^{-7}$ eV. The line indicates $\Delta\chi^2 = 2.71$ used to define the upper limit on $g_{a\gamma}$.

A stringent constraint is set on axion coupling LHAASO coll. 2023 (Science adv. 9, 2778)

• Axion significance < 2sigma, we give constraints on axion coupling

In comparison with other constraints

Kinetics with LIV $E^2 = p^2 c^2 * (1 + a1(pc/M_{pl} c^2) + a2(pc/M_{pl} c^2)^2 + \cdots)$

- A free photon in vacuum is stable in LI; For LIV, if the effective mass of a photon $E_{\gamma}^2 p_{\gamma}^2 = \frac{p^{n+2}}{E_{LIV}^n} = m_{\gamma,eff}^2$ is greater than a pair of e+e-, the photon decay $\gamma > e+e-$ very tast and leads to a sharp cutoff at the SED
- Change the threshold of an interaction. The threshold of $\gamma \gamma \rightarrow e + e \epsilon_{thr} = \frac{m_e^2 c^4}{E} + \frac{1}{8} \left(\frac{E}{E_{LIV}}\right) E$ is improved; more transparent for

• Energy dependent speed of light at LIV; $v(E) = \partial \omega / \partial k = \partial E / \partial p$ $\approx c \left(1 \pm \frac{1+n}{2} (E/E_{LIV,n})^n\right)$, it leads to time delay for different E from Z, • ... others $\Delta t = \frac{\Delta z}{H_0} = \frac{1+n}{2H_0} \left(\frac{E_0}{\xi E_{pl}}\right)^n \int_0^z \frac{(1+z')^n dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$

LIV by GRB 221009A

- The intrinsic gamma spectrum shows a bump at the highest energy. It stimulates a lot of interests. LIV is a possible solution which leads to more transparent EBL.
- As the significance is not high. Constraint on LIV is set finally $E_{LIV} > 1.5 M_{Pl}$.

Constraint on LIV by time lag of different energy photons from GRB 221009A

- Cross correlation function (CCF). Light curves of different energy bands are given by the WCDA data. CCF method is adopted to derive the time lags of the different light curves.
- Maximal likelihood method. The probability density function (PDF) of a photon at time *t* and N_{hit} is given. $\lambda(t)$ is the intrinsic light curve with possible time lag $\Delta t_{L/V}(E)$.

$$P(t, N_{\text{hit}} | \eta_n, I) \propto \int_0^\infty \lambda \left[t - \Delta t_{\text{LIV}}(E, \eta_n) \right] \gamma(E)$$
$$\times F(E) A_{\text{N}_{\text{hit}}}(E) dE; N_{hit} = 0, 1, ..., 9$$

The stringent LIV constraint by time of flight

Cao, Z. et al., PRL 2024

• For the 2nd LIV the LHAASO constraint is the best one with 6-8 times improvement to Fermi-LAT result.

Method	Cross co	orrelation fu	inction	Maximum likelihood			
	$\eta^{ m LL}$ $\eta^{ m BF}$		$\eta^{ m UL}$	$\eta^{ m LL}$	$\eta^{ m BF}$	$\eta^{ m UL}$	
η_1	-0.25	0.05	0.18	-0.10	0.00	0.10	
η_2	-0.60	0.25	0.64	-0.27	0.00	0.29	
	superluminal	superluminal subluminal		superluminal	subluminal		
$E_{\rm QG,1}[10^{20}{ m GeV}]$	0.5		0.7	1.2		1.2	
$E_{\rm QG,2} [10^{11} {\rm GeV}]$	5.0		4.8	7.5		7.2	

利用 KM2A 230-900s 的 142 个光子计算 likelihood function:

$$\mathcal{L}\left(\eta_{n} \left| \left\{ t^{(i)}, E_{\mathsf{est}}^{(i)} \right\} \right) = \prod_{i=1}^{142} P(t^{(i)}, E_{\mathsf{est}}^{(i)} | \eta_{n})$$

定义:

TABLE II. The calibrated best fits of η_n , the lower and upper bounds of the 95% CIs of η_n , and the corresponding 95% CL lower limits on the E_{QG} .

	η_1			η_2			$E_{\rm QG,1}$	10^{19}GeV	$E_{\rm QG,2} \left[10^{11} {\rm GeV} \right]$	
	$\eta_{ m LL}^{ m cal}$	$\eta_{ m best}^{ m cal}$	$\eta_{ m UL}^{ m cal}$	$\eta_{ m LL}^{ m cal}$	$\eta_{ m best}^{ m cal}$	$\eta_{ m UL}^{ m cal}$	S = +1	S = -1	$\mathcal{S} = +1$	$\mathcal{S} = -1$
Model-1	-0.189	0.024	0.083	-0.029	0.002	0.010	14.7	6.5	12.0	7.2
Model-2	-0.159	0.011	0.100	-0.024	0.001	0.011	12.2	7.7	11.5	7.9
Model-3	-0.184	0.015	0.074	-0.077	0.002	0.009	16.4	6.6	13.1	4.4

The photons with the maximum energy

The energy of each photon depend on the true SED, which is SED model dependent.

$$P(E|(E_{rec},\theta)) = \frac{f(E)A_{eff}(E,\theta)P(E_{rec}|(E,\theta))}{\int f(E)A_{eff}(E,\theta)P(E_{rec}|(E,\theta))dE}$$

$$\xi = \int_0^{E_{\xi}} P(E|(E_{rec},\theta)) dE$$

$T_{event}(s)$	E_{LP} (TeV)	E_{PLEC} (TeV)	E_{EBL} (TeV)	N_{e}	N_{μ}	θ (°)	$\Delta\psi$ (°)	D_{edge} (m)	P (%)
236.6	$12.7^{+6.2}_{-3.8}$	$9.7\substack{+3.3 \\ -2.1}$	$9.8^{+3.1}_{-2.3}$	60.6	0	28.5	0.46	77	7.0
242.5	$10.5\substack{+5.0 \\ -3.2}$	$8.3\substack{+3.0 \\ -2.1}$	$8.4^{+3.2}_{-2.2}$	57.4	0	28.8	0.45	111	10
262.4	$12.6\substack{+5.5 \\ -3.8}$	$9.5\substack{+3.4 \\ -2.3}$	$9.6\substack{+3.3 \\ -2.4}$	57.3	0	28.6	0.53	180	5.7
358.1	$10.0\substack{+4.8\\-3.2}$	$7.4^{+3.1}_{-1.8}$	$7.9^{+3.3}_{-2.2}$	46.0	0	28.7	0.54	119	6.0
571.1	$9.4^{+5.1}_{-3.0}$	$7.4^{+2.6}_{-2.5}$	$7.7^{+3.0}_{-2.5}$	45.7	0	29.5	0.52	99	7.8
643.0	$17.8\substack{+7.4\-5.1}$	$12.2^{+3.5}_{-2.4}$	$12.5^{+3.2}_{-2.4}$	81.8	0.3	29.7	0.62	181	4.5
812.4	$11.1^{+5.9}_{-4.3}$	$7.4^{+3.6}_{-2.8}$	$7.6\substack{+3.9 \\ -3.0}$	68.0	0	30.3	0.66	112	11
863.8	$12.9\substack{+6.1 \\ -3.9}$	$9.2^{+3.0}_{-2.8}$	$9.7\substack{+3.2 \\ -3.1}$	100.2	0.8	30.1	1.07	81	17
894.1	$13.6^{+6.1}_{-4.2}$	$9.7\substack{+3.4 \\ -2.5}$	$10.4\substack{+3.3 \\ -3.0}$	60.5	0	31.8	0.83	214	16

- TITLE: GCN CIRCULAR
- NUMBER: 32677
- SUBJECT: LHAASO observed GRB 221009A with more than 5000 VHE photons up to around 18 TeV
- DATE: 22/10/11 09:21:54 GMT
- FROM: Judith Racusin at GSFC <judith.racusin@nasa.gov>

Summary

- LHAASO has large coverage of muon detector. It has large FOV, wide energy range, high sensitivity and achieves impressive success. Dozens of UHE gamma sources have been observed.
- Complete light curve of GRB 221009A for TeV afterglow was observed by LHAASO. The spectrum was measured from ~200GeV – ~10TeV.
- Implications of the measurements on EBL and new physics scenarios are studied. Strong constraints on EBL at large wave length, axion coupling and LIV energy scales are derived.