The Southern Wide-field Gamma-ray Observatory

Marcos Santander (University of Alabama)

Vulcano Workshop 2024 - May/Jun 2024 - Isola d'Ischia, Italy

Adapted from R. White

Detection techniques in VHE astronomy

VHE astronomy requires large effective areas (>10⁵ m²), mostly limited to ground-based options.

Particle detection technique

- Wide field of view (~ 2 sr)
- High duty cycle (~100%)

Imaging Atmospheric Cherenkov technique

- Good angular resolution (0.1° or better)
- Good energy resolution O(10%)
- Low energy threshold (> 20 GeV)

MAGIC

Equator

IACT

the second second second

WCD (or particle detection)

M. Santander - SWGO - Vulcano Workshop (Ischia, Italy - May/Jun 2024)

CURRENT VHE INSTRUMENTS

LHAASO (Sichuan province, China) 4,410 m.a.s.l.

Equator

HAWC (near Puebla, Mexico) 4,100 m.a.s.l.

Observations of gamma-ray sources > 100 TeV Nature (2021)

HAWC arXiv/2311.00861

arXiv/2306.06372

VHE Galactic diffuse emission

SVG Recent highlights from HAWC and LHAASO

Photons with 0.2 < E (TeV) < 7 (WCDA)

Detection of GRB 221009A up to 13 TeV (LHAASO)

arXiv/2310.08845

Photons with KM2A

TeV Sun! (HAWC)

The need for a southern wide-field instrument

M. Santander - SWGO - Vulcano Workshop (Ischia, Italy - May/Jun 2024)

Advantages of a southern detector

- Visibility of the inner Galaxy (including the Galactic Center)
- Full-sky coverage for multimessenger and multiwavelength transients.
- Cosmic-ray anisotropy studies.

• A wish list

- High elevation (>4400 m) for low energy threshold.
- 10° 30° S latitude for good GC visibility, overlap with North)
- Large area (up to km² or above) for UHE performance
- Good angular resolution, O(0.1°)

Synergistic opportunities for SWGO

arXiv/2307.04427

ſ Current and future neutrino telescopes (Galactic neutrino emission detected).

Strong synergy with CTAO.

M. Santander - SWGO - Vulcano Workshop (Ischia, Italy - May/Jun 2024)

7

M. Santander - SWGO - Vulcano Workshop (Ischia, Italy - May/Jun 2024)

Geo SWGO Collaboration

- 15 countries. 90+ institutes.
- Peru, Portugal, South Korea, United Kingdom, United States.

M. Santander - SWGO - Vulcano Workshop (Ischia, Italy - May/Jun 2024)

• Partner countries: Argentina, Brazil, Chile, China, Croatia, Czech Republic, France, Germany, Italy, Mexico,

SWGO Collaboration meeting (April 2024)

M. Santander - SWGO - Vulcano Workshop (Ischia, Italy - May/Jun 2024)

Site search

 Candidate sites identified in Argentina, Chile and Peru at latitudes between 14° and 24° S and elevations between 4,400 and 4,850 m.a.s.l.

• All sites should be able to host a $\sim 1 \text{ km}^2$ array.

 Candidate sites were originally defined as best suited for WCD tanks, or for deployment in an artificial pond, or a natural lake.

 All primary candidate visited in Oct-Nov 2022 by an SWGO team. Findings <u>here</u>.

11

Cerro Vecar, Argentina 4,800 m.a.s.l.

sites during our site selection process.

Sites under evaluation as primary candidates for a tank array

• A shortlist of sites is being further evaluated for performance, costs, risks and environmental/societal impacts towards a site decision expected in Q3 of this year.

We aim to maintain a close engagement with the local community at these

SWGO Array optimization studies

M. Santander - SWGO - Vulcano Workshop (Ischia, Italy - May/Jun 2024)

68

Ruben Conceição (ICRC 2023)

ay developed by

Simulated Event

Try the 3D visualizer! https://wminho.lip.pt/swgo/

swight A next-generation instrument

Novel shower observables for gamma/hadron discrimination

Improved data analysis with integrate machine learning algorithms

Normalised signal time trace 0.000 0.000 0.004

0.000

0

5

LCm - the shower footprint azimuthal fluctuations

Analyse the PMT signal time trace with NN to tag muons

15

t [ns]

10

20

25

30

 $\square N_{\mu} \ge 1$

 $N_{\mu} = 0$

Ruben Conceição (ICRC 2023)

Alternative configurations for the array layout

Uniform vs isles distribution for the outer array

Matryoshka double-layered bladder

Expected SWGO sensitivity

Expected SWGO sensitivity

Recent progress: perfomance example for one configuration (A4)

M. Santander - SWGO - Vulcano Workshop (Ischia, Italy - May/Jun 2024)

SVGO Angular resolution goal

M. Santander - SWGO - Vulcano Workshop (Ischia, Italy - May/Jun 2024)

sweet Science benchmarks

	Core Science Case	Design Drivers	Benchmark Description
	Transient Sources: Gamma-ray Bursts	Low-energy Site altitude	Min. time for 5σ detection F(100 GeV)= 10 ⁻⁸ erg cm
	Galactic Accelerators: PeVatron Sources	High-energy sensitivity Energy resolution	Maximum exp-cutoff energy detectable 95% CL in 5 for: F(1 TeV)= 5 mCrab, index= -2.3
	Galactic Accelerators: PWNe and TeV Halos	Extended source sensitivity Angular resolution	Max. angular extension detected at 5σ in 5-yr integred for: F(>1 TeV)= 5 × 10 ⁻¹³ TeV cm ⁻² s ⁻¹
	Diffuse Emission: Fermi Bubbles	Background rejection	Minimum diffuse cosmic-ray residual background l Threshold: < 10 ⁻⁴ level at 1 TeV.
	Fundamental Physics: Dark Matter from GC Halo	Mid-range energy sensitivity Site latitude	Max. energy for bb^- thermal relic cross-section at 95 in 5-yr, for Einasto profile.
	Cosmic-rays: Mass- resolved dipole Multipole anisotropy	Muon counting capability	Max. dipole energy at 10^{-3} level. Log-mass resolutio PeV – goal is $A = 1$, 4, 14, 56; Maximum multipole so 0.1 PeV.

SWGOO Detector options and prototyping

Strong push for consolidation of detector options.

- Options evaluated so far include plastic and metal tanks, and R&D work for lake or pond-based WCDs.
- Evaluated for performance and cost.

SWGO R&D Phase Milestones

M1	R&D Phase Plan Established
M2	Science Benchmarks Defined
M3	Reference Configuration and Options Defined
M4	Site Shortlist Complete
M5	Candidate Configurations Defined
M6	Performance of Candidate Configurations Evaluated
M7	Preferred Site Identified
M8	Design Finalized
M9	Construction and Operations Proposal Complete

- R&D phase completion in early 2025.
- Preparatory phase
 - Detailed construction planning
 - Engineering Array
- Full construction phase (2027+)

- SWGO currently in an advanced R&D phase.
- Unique science opportunities and strong synergies with current and future instruments: • Capabilities for joint MMA studies, follow-up of transients (high duty cycle, wide field of view).

 - Gamma-ray observations spanning four orders of magnitude in energy (0.1 1 PeV). Capable of setting strong DM constraints up to the unitarity bound and enable other
 - BSM searches (e.g. axion, LIV)
 - Critical energy range for CR anisotropy, composition and spectrum studies.
- Set to become a critical component of the MMA / MWL landscape in the near future.

