

Direct measurements of cosmic rays and their possible interpretations (effects of the local sources)

Igor V Moskalenko / Stanford U.

Ischia, May 26 -June 1, 2024

Timeline of γ-ray, CR, and particle experiments

SNR paradigm challenge

Туре	Ejecta E _{kin} , erg	Frequency	Observed number (MW)
Supernova remnant	10 ⁵¹	~0.03/year Last was in 1604!	294 (Green Catalogue)
Wolf-Rayet wind	10 ⁵¹ -over the lifetime		354
O star wind	10^{50} (0.01 L _x)-over 5 Myr winds (2-4)x10 ³ km/s		20,000
Pulsar (Crab)	~4x10 ⁴⁹ (total E _{rot})		~1500
Nova	10 ⁴⁵	~30-40 per year	350
Stellar flare	10 ³⁶		
Solar flare	10 ³² -10 ³³	Some 10 per year	

Local Bubble and OB associations

 The Local Bubble – a low-density region of ~200 pc around the Sun filled with hot HI gas is formed in a series of SN explosions (Sfeir+1999, Frish+ 2011)

- A number of OB stars in the vicinity of the solar system, as close as 100 pc
- Yellow/greenish color marks features at the same distance from the Galactic plane as the solar system

Galactic Loops

- WMAP K-band polarization intensity map
- Unsharp mask version of the Haslam et al. (1982) map
- The origin of the Loops is unknown
- If these are old SNR,
 accelerated particles may still
 be present in the shells
- Signatures of the past (recent?)
 activity in the Solar
 neighborhood

Low-energy features

Wallner+'2021

⁶⁰Fe as a tracer of SN activity in the solar neighborhood

- The evidence of the past SN activity in the local ISM is abundant (Fry+2015; Wallner+2016,2021; Breitschwerdt+2016)
- The Local Bubble is a low-density region of the size of ~200 pc filled with hot H II gas that itself was formed in a series of SN explosions
- ♦ Indications of several SNe between ~1.5 and ~3 Myr ago within 100 pc of the Sun
- \Leftrightarrow $^{60}\text{Fe:}$ a half-life 2.6 Myr, β^- decay
- Excess of radioactive ⁶⁰Fe in deep ocean sediments (Knie+'1999, 2004; Ludwig+'2016; Wallner+'2016)
- Antarctic snow (Koll+'2019).
- Lunar regolith samples (Cook+'2009; Fimiani+'2012, 2014)
- ♦ ACE-CRIS observations of ⁶⁰Fe (Binns+'2016)

Iron excess/deficit in CR^{0.010}

Fe/He

- The excess in iron comparison of Voyager 1, ACE-CRIS, and AMS-02 data
- ♦ Most visible in Fe/He, Fe/O, Fe/Si ratios
 ♦ Absent in He/O and Si/O ratios
- ♦ Falls in line with other evidences (⁶⁰Fe)
- Local sources: large fragmentation cross sections and fast ionization losses
- ♦ Fe group: Ni/Fe = const (CALET)
- Important to measure sub-Fe/Fe ratio

Aluminum excess

- An excess in aluminum becomes clearly visible when we compare the Al/Si ratio with model predictions
- A similar feature in
 Na/Si ratio is absent
- The excess is observed in a narrow region 3-10 GV (~0.8-4 GeV/n), where the production cross sections are mostly flat
- Indicates a presence of low-energy Al component, perhaps associated with local sources (massive stars?)

There are more low-energy excesses observed (Li, F) and even more is coming in 2024...

Stay tuned!

The TV bump

200 GV break in spectra of CR species

- ATIC-2 (Panov+'2009) and CREAM "Discrepant hardening observed in cosmicray elemental spectra" (Ahn+'2010)
- Initially looked like a calibration issue between <200 GeV and >200 GeV instruments, which used different techniques
- Beautifully outlined by PAMELA (went up to 1 TeV)
- Do not be confused, plots have different units: GeV/particle, GeV/nucleon

Early hypotheses of the origin of ~200 GV break

• Vladimirov+2012

proposed 4 distinct scenarios: Propagation, Injection, Local Source at low or high energies. Propagation scenario (break in the diffusion coeff.) was a favorite

- Blasi+12 proposed physical motivation for the break in the diffusion coefficient
- The diffusion coeff. scenario reproduced the observed difference between spectra of primary and secondary species

Alpha Magnetic Spectrometer-02 (AMS-02) measurements of the 200 GV break

- It is most clearly seen in AMS-02 data, which cover this range
- CR species are sorted by approximate order of their spectral index in 50-200 GV range
- Fe has the flattest spectrum followed by He, O, C, and then Si, S, Ne, Mg
- The steeper spectra are observed in H, Al, N, Na, F, B, Be, and the steepest is Li (partly tertiary)
- Fluorine is flatter than Boron, and may indicate a different origin or a presence of the primary component

TeV bump

- The TeV bump is now confirmed by several instruments
- The two breaks, at ~0.2 TV and 10 TV, plus anisotropy increase indicate a single structure rather than two separate features
- Protons are dominant: Rigidity ≈ Kinetic Energy per Particle (in TeV range)

Small-scale anisotropy @ 10 TeV & local B field

- Very sharp jump in
 anisotropy across the
 magnetic equator a hint at
 the proximity of the source
- The direction to the source coincides with the Galactic anticenter, the direction of the local B-field, and about 45° off the "tail" of the heliosphere

Models of the TeV bump

Local SNR + gas cloud models

Claimed to reproduce all observed features in CR nuclei, e^{\pm} , pbars

production of

secondaries

H, He, C, O, Si, Fe

Be. B.

H, He, C, O, Si, Fe Li, Be, B, F, Sc, Ti, V, e⁺

SNR

Yang & Aharonian'2019 Liu+'2019 Fang+'2021 Fornieri+'2021 Yuan+'2021 Zhao+'2022, 2022 Luo+'2022, 2023 Qiao+'2022, 2023 Y. Zhang+'2022 P.-P. Zhang+'2023 Nie+'2023

+Galactic CRs

Sùn

- Many models are speculating on the idea of a local SNR (~300 pc, Geminga SNR)
- Consider a combination of the Galactic CRs with concave spectra + sharp peak from the **local SNR**
- Secondary species are produced in gas cloud(s)
- Propose to reproduce antiprotons, electrons, positrons
- Proposed to reproduce CR anisotropy

- SNR accelerates particles (primary nuclei, e⁻) with a cutoff at 5 TV
- They produce secondaries (LiBeB, e[±]) in the cloud
- Primary e⁻ loose energy to make a break at 1 TV
- e[±] are produced with a cutoff at 300 GV (5 TV cutoff in protons)
- Proposed source Geminga SNR, age 330 kyr at 330 pc
 20

Some issues with local SNR model

- A lot of fine tuning
- To make a room for the SNR component, one has to make a concave spectrum of the Galactic CRs. I.e. one has to make a dip in the Galactic CR spectrum and a peak in SNR component <u>at the</u> <u>same energy simultaneously</u>
- Used a modified Tomassetti's (2015) two-halo scenario with two different rigidity dependence of the diffusion coefficient
- 8 transport parameters + 6 spectral parameters + individual normalization for SNR (28) components for each species + 7 parameters for e⁻ + gas cloud grammage ≈ 45-50 free parameters
- Cannot reproduce the sharp jump in anisotropy along the magnetic equator

Galaxy with two halos and a local source

Diffusion length and anisotropy

- The gyroradius of a particle with rigidity 10 TV in the interstellar 3 μG magnetic field is 600-700 AU ~ (3-4) ×10⁻³ pc
- Geminga SNR is at ~330 pc
- This is ~10⁵ mean free paths there is no way to see such sharp anisotropy at such a distance
- The observed anisotropy exhibits very sharp break at the magnetic equator
- All global models of the TV bump have this problem
- Conclusion: the source should be close

Reacceleration in a local shock

- Assumes all CR species exist in the ISM and have power-law spectra with no breaks
- No free parameters but the parameters of the shock
- Matches the AMS-02 data with tiny error bars

Table 2. Input parameters for CR species derived from their LIS (Boschini et al. 2020, 2021) at ≈ 100 GV.

Parameters	Н	He	В	С	0	Fe	
$A_b (\mathrm{m}^{-2}\mathrm{s}^{-1}\mathrm{sr}^{-1}\mathrm{GV}^{-1})$	2.32×10^{4}	3631	70.2	111	108	11.6	
γ _b	2.85	2.77	3.09	2.75	2.73	2.66	_

- A_s, γ_s − fixed normalization and spectral index of the LIS below the bump (individual for each species)
- $\diamond~$ LIS for H-Ni are given in Boschini+'2020

Malkov & IVM

Shock parameters

Derived from best measured proton spectrum – 3 parameters

fixed below the break for each species

 $f_s(R) = A_s R^{-\gamma_s} \left\{ 1 + \frac{\gamma_s + 2}{q - \gamma_s} \exp\left[-\sqrt{\frac{R_0}{R}} - \sqrt{\frac{R_0}{R}}\right] \right\}$

O - parameters fixed from CR proton spectrum

 $q_s = (r+2)/(r-1) - \text{shock spectral index},$ r - the compression ratio

Table 1. Model parameters and fit results for the proton spectrum.							
Parameter (St. err. %)	$R_0(GV)$	$R_L(GV)$	q_s				
Realistic Model (RM)	5878 (3.5%)	2.24×10^5 (28%)	4.20				
Loss-Free Model (LF)	4794 (3.2%)	00	4.73				

♦ Moderate reacceleration, Mach number ~1.5
 ♦ Low-energy particles do not reach us as they are convected downstream by the ISM flow
 ♦ High-energy particles lost from the flux tube

Duck test If it looks like a local shock, has only 3 free parameters, and provides the simplest interpretation of several types of (precise) data

then it is likely a local shock

Epsilon Eridani star

♦ Distance-shock-size relation: ζ_{obs}(pc) ~ 100 √L_⊥(pc); for sufficiently large bow shocks, L_⊥ = 10⁻³-10⁻² pc, then the distance is ζ_{obs} = 3-10 pc (Malkov & IVM'2021, 2022)

♦ Any local shock with a small Mach number ~1.5 fits

 \diamond $\underline{\epsilon}$ Eri: K2 dwarf (5 000 K), 0.82 M $_{\odot}$, 0.74 R $_{\odot}$ (preferred)

♦ Well aligned with the direction of the local magnetic field – within 6.7° !

- ♦ Distance 3.2 pc
- \diamond Mass loss rate 30-1500 \dot{M}_{\odot} !
- ♦ Huge astrosphere 8000 au, 47' as seen from Earth (larger than the Moon!)
- Proper velocity 20 km/s (a bit small, but has a strong stellar wind)

ε Eridani star

CR spectrum depends on position of the observer

ε Eridani star and the Sun are moving, and the configuration changes

THEREFORE, the position of the break should change with time

- We are just in the beginning in our understanding of the influence of our local Galactic environment onto the observed CR fluxes
- We used to think about Galactic CR fluxes as stable on the scales of kyr-Myr, but watch for possible changes on 10-30 yr scale
- The precise direct measurements are the keys

Conclusion

