

RECENT RESULTS ON COSMIC RAYS **DIRECT OBSERVATIONS**

ROBERTA SPARVOLI UNIVERSITY OF ROME "TOR VERGATA", ITALY INFN - SECTION OF ROME "TOR VERGATA", ITALY

CR FLUX & COMPOSITION

Energetic particles and ionized nuclei from outer space

- Many orders of magnitude in energy and flux:
- o E < 100 TeV: direct detection

o E > 100 TeV: indirect detection

- Roughly, the all-particle spectrum is a "power law" in many orders of magnitude of energy and intensity, with several features (knee, second knee, ankle, ...):
 - y = 2,7 until 10^16 eV
 - $\gamma = 3,0$ after 10^16 eV

MAIN RESEARCH LINES FOR "DIRECT DETECTION"

Mainly concerning <u>Galactic Cosmic Rays</u>!

- CR flux reconstruction up to the highest energy band (looking for sources and acceleration mechanisms, ...)
- CR compositions studies (looking for source material, dust/gas distribution, nucleosynthesis, selection effects, ...)
- CR flux modulation in the low energy band (looking for effects from heliosphere/ magnetosphere, ...)
- sources, ...)

According to the physics line, different detections techniques have been adopted

Antimatter component in CRs (looking for dark-matter and anti-matter limits, nearby

EXISTING PLATFORMS

Balloon experiments (CREAM, ATIC, BESS-

Polar, TRACER, TIGER& SuperTIGER, ...): very popular in the 80's, but later on they were subsituted by satellite. They returned popular especially with the **NASA Long and** Ultra-long Duration Balloon Program (LDB and ULBD).

Satellite experiments (PAMELA, FERMI,

DAMPE, NUCLEON, ...): started from 2000. No residual atmosphere but challenging&expensive. Several constraints imposed on experiments.

Space station experiments (AMS, CALET, ISS-Cream,...)

CURRENT AND PAST EXPERIMENTS

- Main differentiation:
- 1. Spectrometers:
 - Sign of the charge (antimatter, isotopes)
 - Limit in energy by magnetic field
- 2. Calorimeters:
 - Higher energy window

ALPHA MAGNETIC SPECTROMETER "AMS-02"

Launched May 16th, 2011, on ISS

2015 and collected \sim 1.8 billion events so far.

DARK MATTER PARTICLE EXPLORER "DAMPE"

Satellite-borne particle detector, project of the Strategic Pioneer Program on Space Science, promoted by the Chinese Academy of Sciences (CAS).

> ALTITUDE: 500 km PERIOD: 95 minutes ORBIT: Sun-synchronous

Study of Cosmic Rays composition, origin and propagation Search for Dark Matter signatures in lepton and photon spectra High Energy Gamma-Ray Astronomy

PSD: double layer of scintillating strip detector acting as ACD (anti-counter) + charge measurement

BGO: the calorimeter is made of 308 BGO bars in hodoscopic arrangement (~31 X_0). Performs energy measurements, hadron/lepton identification (*e/p rejection*), and trigger

Launched December 17th, 2015

STK: 6 tracking double layer + 3 mm tungsten plates. Used for particle measurement and photon conversion

NUD: it's complementary to the BGO e/p rejection, by measuring the thermal neutron shower activity. Made up of boron-doped plastic

LARGE AREA TELESCOPE ON BOARD "FERMI"

The Fermi Gamma-ray Space Telescope circles Earth every 96 minutes in a 26° inclination orbit at an altitude of 535 km.

Fermi carries two scientific instruments, the Large Area Telescope (LAT) and the Gammaray Burst Monitor (GBM).

Launched June 11th, 2008

the LAT modular - 4x4 array y 7 ton - 650watts

Tracker (4x4 array of towers)

Precision Si-strip Tracker (TKR) 18 XY tracking planes with tungsten foil converters. Single-sided silicon strip detectors (228 µm pitch, 900k strips) Measures the photon direction; gamma ID.

ACD

Segmented **Anticoincidence Detector** (ACD) 89 plastic scintillator tiles. Rejects background of charged cosmic rays; segmentation mitigates self-veto effects at high energy.

Calorimeter

Hodoscopic Csl Calorimeter (CAL) Array of 1536 Csl(Tl) crystals in 8 layers. Measures the photon energy; image the shower

Electronics System Includes flexible, robust hardware trigger and software filters.

HIGH ENERGY PARTICLE DETECTOR ON BOARD "CSES-01" Launched Feb. 18th, 2018

The CSES-01 satellite is based on the Cinese CAST2000 platform and moves in a sun-synchronous orbit at 500 km altitude and with an orbital inclination of approximately 98°. It hosts several payloads, among them HEPD-01

HEPD-01 functional scheme

Bottom Veto LYSO Matrix

FROM JUNE 2006 UNTIL JANUARY 2016

PAMELA detector

"BESS-POLAR | AND ||" (2004 & 2007)

The BESS Project

2 BESS-Polar I and II experiment

BESS-Polar I & II flights were carried out over Antarctica.

	BESS-Polar I	BESS-Po
Launch date	Dec. 13 th ,2004	Dec. 23 rd , 20
Observation time	8.5 days	24.5 days
Cosmic-ray observed	9 x 10 ⁸ events	4.7 x 10 ⁹ eve
Flight altitude	37~39km (5~4g/cm²)	~36km (6~5g

SUPER TRANS IRON GALACTIC ELEMENT RECORDER "SUPER-TIGER" (2012-2019)

Building on the success of TIGER (launched in 2001 and 2003), SuperTIGER (Super Trans-Iron Galactic Element Recorder) had a record-breaking 55-day flight over Antarctica in December 2012 -January 2013 and a 32-day flight in December 2019 – January 2020.

S1 scintillator H1 hodoscope C0 aerogel Ck C1 acrylic Ck S2 scintillator H2 hodoscope S3 scintillator

"ISS-CREAM" : 2017 - 2019

- Launch : Aug. 14, 2017
- Data taken period : Aug. 22, 2017 ~ Feb. 12, 2019 (~ 539 days)
- Design to direct measurement of high-energy cosmic rays

Top/Bottom Counting Detector (TCD & BCD) : e/p separation, trigger Boronated Scintillator Detector (BSD) : e/p separation by neutron detection

"NUCLEON" (2014 - 2017)

Apparatus mounted aboard the RESURS-P2 satellite.

Sun-synchronous orbit with an inclination of 97° and an altitude of 475 km.

KLEM technique.

tracker); 4 - three double-layer planes of the scintillator trigger system (the trigger system); 5 - a small aperture

PRIMARY & Secondary Cosmic rays

- produced by different sources (inside and outside the Galaxy)
 accelerated at different energies by different mechanisms
- propagated inside the galaxy through the Interstellar Medium

PROTON SPECTRUM (10 GEV-> 100 TEV)

Spectra of protons and helium is not a single power law below the knee > The hardening at R = p/Z ~ 300 – 400 GV is well established since first observation by CREAM and PAMELA \triangleright The softening at R = p/Z ~ 10 TV is observed by different experiments, first strong evidence in DAMPE

HELIUM SPECTRUM (10 GEV—> 100 TEV)

As for protons, helium spectrum shows as well:

A hardening at $R = p/Z \sim 300 - 400 \text{ GV}$ \triangleright A softening at R = p/Z ~ 10 TV

Characterized France France The He spectrum is slightly harder than that of protons ($\Delta \gamma = 0.1$)!!

CARBON AND OXYGEN FLUXES

Difference in flux normalization between experiments !

C and O show a hardening at hundreds of GeV/n. Same for all elements!

He, C and O have the same rigidity dependence, i.e. hardening, at about 300 GV (but different from protons..).

LIGHT SECONDARY ELEMENTS LI, BE, B AND B/C RATIO

Secondary hardening is stronger —> The flux hardening seems to be a propagation/diffusion effect.

***** No clear hints on the softening at 10 TeV

HEAVIER NUCLEI & UNSTABLE ISOTOPES

- Mostly related to the origin of CRs and acceleration sites
- Composition studies
- Cosmic ray clocks and confinement

ELEMENTS WITH Z<40 AND 40 < Z < 56

Refractory elements that condense in dust grains are preferentially accelerated by SN shocks compared to volatile elements residing in gas;

the GCRs are a mix of outflow from "young" massive stars and normal "old" ISM;

Composition of sources is well described by 80% solar system (SS) + 20% massive star outflows (MSO).

This mixture is representative of **OB** associations (young and massive stars, high-rate of SN).

THE MODEL BREAKS FOR Z>40. PRESENCE OF OTHER SOURCES?

UNSTABLE BE ISOTOPES

Secondary ¹⁰Be -> ¹⁰B + e⁻ + v, with $t_{1/2} = 1.6$ My.

halo size.

By latest AMS data, tension with transport models??

ANTIMATER & ELECTRONS

Test of propagation mechanisms;
Anti-Matter of primordial origin expected to peak at few GeVs;
Dark Matter could be present anywhere to very low energies up to TeVs;
Anti-Matter of Dark Matter origin could be present at GeV or below;

POSITRON FLUX

- Evidence for a new source of positrons; signal has a clear cut-off!
- Astrophysical explanation calls for pulsars contribution -> highly probable

Still room for **DM models?** Important to know how the bumps falls....

ALL-ELECTRON SPECTRUM FROM SPACE AND GROUND

Some disagreements between groups of experiments (systematics issues)

Connection to ground-based experiments

Drop-off at 1 TeV

The spectra at high energies dominated by close and young cosmic ray sources

No antiproton excess at low energies (related to primordial AntiMatter/evaporation of primordial BHs)

- Excess of antiprotons over the predictions (CR collisions) at **high energies** -> primary antiprotons?
- Better knowledge of cross-sections/CR confinement?

Interstellar wind Heliopause wind on shock Bow shock Solar v terminatic Solar System

COSMIC RAYS IN THE HELIOSPHERE

Low energy particles affected by Solar Modulation and by the Earth geomagnetic field

 solar/geomagnetic effects are "background" / source of systematics for astrophysics

 solar/geomagnetic effects are "background" / source of systematics for fundamental physics

PARTICLES IN THE HELIOSPHERE/SOLAR MODULATION

- extreme interest for the HelioPhysics and SpaceWeather communities
- **Daily data available !**
- Different experiments / detectors (HEPD-01, CALET, ...) are sensitive to different energies.

Experiments operated in the last ~ 15 years (mainly AMS and PAMELA) provided a lot of data of

NEAR-FUTURE EXPERIMENTS

We need data !

Quite exciting near-future on all science items

"HELIX" BALLOON STAGE 1 : JUST LAUNCHED FROM KIRUNA!

- A new magnet spectrometer payload to measure 10Be/ 9Be isotope ratio up to 10 GeV/n
- Isotopes Z<10
- Stage 1 (7-14 day exposure): covers up to ~ 3 GeV/n

"GAPS" BALLOON: FIRST LAUNCH DECEMBER 2024 FROM ANTARTICA

High statistics antiproton spectrum

- 2-3 times improved antideuteron sensitivity compared to BESS
- leading sensitivity to low-energy antihelium nuclei
- GAPS sensitivity in the 100 - 250 MeV/n range

SATELLITE "CSES-02/HEPD-02" : LAUNCH DECEMBER 2024

Operation area between lat [-65,65]

First tracker (and not single layer), based on pixel, operated in space

Full coverage at extreme latitudes

- ▶ 30-200 MeV protons
- > 3-100 MeV electrons
- Light nuclei
- Higher energy window and full coverage wrt HEPD-01

SATELLITE "NUSES/ZIRE' - LEM" : LAUNCH IN 2025

- **NUSES** (NeUtrino and Seismic Electromagnetic Signals) space mission
- Will fly on a Low Earth Orbit (LEO) at an altitude of 550 km at high inclination of 97.8°
- **ZIRE':** for the detection of low energy photons and Cosmic Rays (CRs) until hundreds of MeV
- Low Energy Module (LEM): lowering the energy threshold down to hundreds of keV for electrons.

"AMS" UPGRADE ON ISS : DEPLOYED IN 2026

- 1 new layer, 2 planes 0 (45° X-Y)
- (27um pitch)
 - New (10% reso) Z eval.
- \circ (10 yrs -> 30 yrs)
- 0
 - 0

 - 0

Will increase acceptance, also for positrons/antiprotons

bending direction

L0-Y

7 micron

Silicon microstrip sensors

measurement ABOVE detector -> Fragmentation

10 micron non-bending ladders of 10 sensors adders of ensors

L0-U

rotated 45°

10 micron bending

Factor 3x acceptance

¼ plane Qualif. Model Integration **Vibration Test** Performance

"TIGER-ISS" ON ISS : LAUNCH IN 2026

Counts

TIGER-ISS instrument model for the Japanese Experiment Module "Kibo"

Silicon strip detector (SSD) for precision charge measurement $\sigma Q < 0.24e$ for $5 \leq Z \leq 82$ and SiPM Cherenkov detector readout

In 1 year the statistics of SuperTiger (see below)

No atmospheric correction -> cleaner signal

"HERD" ON THE CSS : LAUNCH IN 2027

G.F. (e)	>3 m²sr@200 Ge∨
G.F. (p)	>2 m²sr@100 Te∨
Energy range (e/γ)	10 GeV - 100 TeV (e); 0.5 GeV - 100 TeV (γ)
Energy range (p)	30 GeV - 5 PeV
Charge meas.	Z=1-28; <0.15 c.u.@Z=1
Energy resolution (e)	1%@200 GeV
Energy resolution (p)	<25%@100 GeV – PeV
e/p separation	>3*10 ⁵ (90% eff.@100Ge∨)
Angular resolution	0.1 deg.@10 Ge∨

High Energy Cosmic Radiation Detector (HERD)

Based on a 3D, homogeneous, finely-segmented calorimeter of 55 X_0 with a wide field of view (2 π). Complemented by other detectors for PID (charge, veto, tracking, ...).

Installation foreseen 2027.

- Measurement of cosmic-rays up to the knee.
- y-rays monitoring and full sky survey.
- Indirect dark matter search (all-electron, y-ray)

CONCLUSIONS: A REVOLUTION IN THE LAST 15 YEARS!

- The flux of CRs is NOT a simple power-law ...
 - First break (hardening) -> propagation

Second break (softening) -> ?

Why is the slope of the spectrum of CR proton and helium different? Helium spallation?

Different acceleration sites or mechanisms?

III. What is the origin of the positron rise?

Astrophysics -> pulsars?

Dark matter?

- **IV.** Is there room for an exotic production of antiprotons at high energy?
- V. Is the electron break at 1 TeV understood?
- VI. A new source for Z>40 elements?

PERSPECTIVES

- New experiments and data coming soon! HELIX, GAPS, CSES-02, NUSES, AMS-upgrade, TIGER-ISS, HERD, ...
- I. New experiments measuring cross sections are needed!
 - e.g. NA61/Shine @ CERN (B isotopes from C beam, and other light elements), LHCf @ CERN, ...
 - "XSCRC2024: Cross sections for Cosmic Rays @ CERN" conference!

More in the talks by (C. Evoli), P. Mertsch, I. Moskalenko, ... et al. !