Highlights from the Telescope Array Experiment

Jihyun Kim

for the Telescope Array Collaboration

University of Utah

jihyun@cosmic.utah.edu

Jihyun Kim @ Vulcano Workshop 2024

Outline

- \bullet Introduction to TA and TA $\times4$
- Energy Spectrum
- Mass Composition
- Anisotropy
- Summary

Telescope Array Collaboration

R.U. Abbasi¹, Y. Abe², T. Abu-Zavvad^{1,3}, M. Allen³, E. Barcikowski³, J.W. Belz³ D.R. Bergman³, S.A. Blake³, I. Buckland³, W. Campbell³, B.G. Cheon⁴, M. Chikawa⁵ K. Endo⁶, A. Fedynitch^{5,7}, T. Fujii^{6,8}, K. Fujisue⁵, K. Fujita⁵, M. Fukushima⁵, G. Furlich⁴ Z. Gerber³, N. Globus^{*9}, W. Hanlon³, N. Havashida¹⁰, H. He⁹, R. Hibi², K. Hibino¹⁰. R. Higuchi⁹, K. Honda¹¹, D. Ikeda¹⁰, N. Inoue¹², T. Ishii¹¹, H. Ito⁹, D. Ivanov³, H.M. Jeong¹³, S. Jeong¹³, C.C.H. Jui³, K. Kadota¹⁴, F. Kakimoto¹⁰, O. Kalashev¹⁵ K. Kasahara¹⁶, S. Kasami¹⁷, Y. Kawachi⁶, S. Kawakami⁶, K. Kawata⁵, I. Kharuk¹⁵ E. Kido⁹, H.B. Kim⁴, J.H. Kim³, J.H. Kim^{†3}, S.W. Kim¹³, Y. Kimura⁶, R. Kobo⁶. I. Komae⁶, K. Komori¹⁷, Y. Kusumori¹⁷, M. Kuznetsov^{15,18}, Y.J. Kwon¹⁹, K.H. Lee⁴ M.J. Lee¹³, B. Lubsandorzhiev¹⁵, J.P. Lundquist^{3,20}, T. Matsuvama⁶, J.A. Matthews³ J.N. Matthews³, R. Mavta⁶, K. Mivashita², K. Mizuno², M. Mori¹⁷, M. Murakami¹⁷, I. Myers³, S. Nagataki⁹, M. Nakahara⁶, K. Nakai⁶, T. Nakamura²¹, E. Nishio¹⁷, T. Nonaka⁵, S. Ogio⁵, H. Ohoka⁵, N. Okazaki⁵, Y. Oku¹⁷, T. Okuda²², Y. Omura⁶, M. Onishi⁵, M. Ono⁹, A. Oshima²³, H. Oshima⁵, S. Ozawa²⁴, I.H. Park¹³, K.Y. Park⁴ M. Potts³, M. Przybylak^{‡25}, M.S. Pshirkov^{15,26}, J. Remington³, D.C. Rodriguez³, C. Rott^{3,13}, G.I. Rubtsov¹⁵, D. Rvu²⁷, H. Sagawa⁵, R. Saito², N. Sakaki⁵, T. Sako⁵. S. Sakurai¹⁷, D. Sato², S. Sato¹⁷, K. Sekino⁵, P.D. Shah³, N. Shibata¹⁷, T. Shibata⁵ J. Shikita⁶, H. Shimodaira⁵, B.K. Shin²⁷, H.S. Shin^{6,8}, K. Shinozaki²⁵, D. Shinto¹⁷ J.D. Smith³, P. Sokolsky³, B.T. Stokes³, T.A. Stroman³, Y. Takagi¹⁷, K. Takahashi⁵ M. Takamura²⁸, M. Takeda⁵, R. Takeishi⁵, A. Taketa²⁹, M. Takita⁵, Y. Tameda¹⁷ K. Tanaka³⁰, M. Tanaka³¹, S.B. Thomas³, G.B. Thomson³, P. Tinyakov^{15,18}, I. Tkachev¹⁵ H. Tokuno³², T. Tomida², S. Troitsky¹⁵, Y. Tsunesada^{6,8}, S. Udo¹⁰, F. Urban³³. I.A. Vaiman¹⁵, M. Vrábel²⁵, D. Warren⁹, T. Wong³, K. Yamazaki²³, K. Yashiro²⁸. F. Yoshida¹⁷, Y. Zhezher^{5,15}, Z. Zundel³, and J. Zvirzdin³

¹Department of Physics, Loyola University Chicago, Chicago, Illinois 60660, USA ²Academic Assembly School of Science and Technology Institute of Engineering. Shinshu University, Nagano, Nagano 380-8554, Japan ³High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112-0830, USA ⁴Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan ⁵Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul 426-791, Korea ^bInstitute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ⁷Institute of Physics, Academia Sinica, Taipei City 115201, Taiwan ⁸Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan ⁹Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ¹⁰Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan ¹¹Interdisciplinary Graduate School of Medicine and Engineering. University of Yamanashi, Kofu, Yamanashi 400-8511, Japan ¹² The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan ¹³Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon 16419, Korea ¹⁴Department of Physics, Tokyo City University, Setagaya-ku, Tokyo 158-8557, Japan ¹⁵Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia ¹⁶ Faculty of Systems Engineering and Science, Shibaura Institute of Technology, Minato-ku, Tokyo 337-8570, Japan ¹⁷ Graduate School of Engineering, Osaka Electro-Communication University, Neyagawa-shi, Osaka 572-8530, Japan ¹⁸Department of Physics, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea ¹⁹Center for Astrophysics and Cosmology, University of Nova Gorica, Nova Gorica 5297, Slovenia ²⁰Faculty of Science, Kochi University, Kochi, Kochi 780-8520, Japan ²¹ Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan ²²College of Science and Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan ²³Quantum ICT Advanced Development Center, National Institute for Information and Communications Technology, Koganei, Tokyo 184-8795, Japan ²⁴Astrophysics Division, National Centre for Nuclear Research, Warsaw 02-093, Poland ²⁵ Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow 119991, Russia ²⁶Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan 689-798, Korea ²⁷Department of Physics, Tokyo University of Science, Noda, Chiba 162-8601, Japan ²⁸Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo 277-8582, Japan ²⁹ Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima 731-3194, Japan ³⁰Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan ³¹Service de Physique Théorique, Université Libre de Bruxelles, Brussels 1050, Belgium ³²Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan ³³CEICO, Institute of Physics, Czech Academy of Sciences, Prague 182 21, Czech Republic

148 members, 33 institutes, 7 countries

Telescope Array (TA) Experiment: hybrid observation

• The largest cosmic ray observatory in the northern hemisphere

Map of the TA site

Scintillator Surface Detectors (SDs)

2024-05-29

Jihyun Kim @ Vulcano Workshoj

Fluorescence Detectors (FDs)

TA×4 Project: Fourfold Extension of TA, ~2,800 km²

Initial Plan:

- Divide into 2 arrays: North, South
- 500 new SDs at 2.08 km spacing
- 12 telescopes for hybrid observation

Current Status:

- Surface Detectors (SDs)
 - 257 detectors were deployed (blue lines)
 - began operation in November 2019
- Fluorescence Detectors (FDs)

- 4 telescopes at North, started operation in June 2018.

8 telescopes at South, started full
operation after the pandemic shutdown in
July 2020

Main Observables of UHECRs

Energy Spectra

TA SD: Spectral Feature in 14-year Data (2008-05-11 to 2022-05-10)

TA SD: Spectral Feature in 10¹⁹–10^{19.5} eV

2024-05-29

Jihyun Kim @ Vulcano Workshop 2024

TA×4 SD Energy Spectrum

- The energy spectrum was measured by the TA×4 SD using data collected for 3 years (October 2019– September 2022).
- Note that the statistics of the TA×4 SD-only events has been limited due to the absence of the inter-tower trigger system in this period.
- Consistent with the energy spectrum measured by the TA SD array.

Energy Spectrum: TA SD (14 years) + TA×4 SD (3 years)

K. Fujisue

Mass Composition

TA Hybrid 10 years of data

TA×4 Hybrid 3 years of data (November 2020–December 2023)

Z. Gerber, APS April 2024

TA×4 $\langle X_{max} \rangle$ vs. log(E/eV)

- (X_{max}) values are calculated as a function of energy for data collected for ~3 years.
- These values are compared to Monte Carlo simulations of singleelement primary distributions using the QGSJET II-04 hadronic interaction model.
- These results indicate that cosmic ray mass composition is light and unchanging at the highest energies.
- Consistent with the previous results of TA.

TA SD 12 years of data

- Used machine learning technique based on BDT analysis
- Found light, unchanging composition above 10¹⁸ eV, with two different high-energy interaction models
- Plan to "calibrate" against hybrid data

Jihyun Kim @ Vulcano Workshop 2024

TA SD UHE Photon Search I. Kharuk, PoS(ICRC2023)324

- Neural network trained to classify protons and photons.
- No UHE photons detected but set the upper limits.

Anisotropies

Intermediate-scale Anisotropy: TA Hotspot

- Max local sig.: **4.8** σ at (144.0°, 40.5°)
- Post-trial prob.: $P(S_{MC} > 4.8\sigma) = 2.7 \times 10^{-3} \rightarrow 2.8\sigma$

linear increase within $\sim 2\sigma$.

PPSC Excess in Slightly Lower Energy Events $(1/2)_{J. Kim, PoS(ICRC2023)244}$

PPSC Excess in Slightly Lower Energy Events $(2/2)_{J. Kim, PoS(ICRC2023)244}$

A new excess in slightly lower energy events in the direction of **the Perseus-Pisces supercluster** has been identified. The chance probability of having an excess as close to the PPSC as the data is estimate:

 $(S_{mc} \ge 4.0\sigma) \& (\theta_{mc} \le 7.7^{\circ}) \rightarrow 3.3\sigma.$

Extremely Energetic Cosmic Ray Observed by TA

- 2021-05-27 10:35:56 UTC, No FD observation
- $E = 244\pm29$ EeV in the direction of $(255.9^{\circ}, 16.1^{\circ})$ in the equatorial coordinates

Abbasi et al., Science 382, 6673 (2023)

Summary

• Energy Spectrum

- Measured over five orders of magnitude in energy by TALE+TA+TA×4, six spectral features (knee, low energy ankle, second knee, ankle, *instep/shoulder* feature, and cutoff)
- Found strong evidence of the spectrum anisotropy in the northern hemisphere
- Observed consistent spectrum from TA \times 4 SD data with the TA SD measurements

Mass Composition

- Light and steady in 10^{18.2}–10^{19.1} eV from TA hybrid data and in 10¹⁸–10²⁰ eV from TA SD data
- Measured consistent mass composition results from TA×4 hybrid data

• Anisotropy

- Hotspot persists near the direction of the Ursa Major constellation
- New excess at slightly lower energy in the direction of the Perseus-Pisces Supercluster
- An extremely energetic cosmic ray event (\sim 245 EeV) in the direction of the Local Void

• Future Prospects

- Need to improve statistics, especially for anisotropy and composition measurements
- Complete TA×4 and take more data!!

We hope to better understand the nature and origin of UHECRs, thereby giving us a window to understanding the universe.

at - atta - The she - the

Thank you!