(Missing) Hot Baryons/Metals: in or out of halos?

F. Nicastro (OAR-INAF)

Outline

- The Universe and galaxy's missing baryons/metals: are they bound to or unbound from structures?
- (UV and) X-ray Observations of the Milky-Way and external galaxies' hot CGM
- Detectability and Study of LSS gas absorption with future X-ray instruments

The Galaxy Missing Baryon Problem

 $\Omega_{\rm b}^{\rm Planck18} = 0.0493 \sim 5\%$ $f_{\rm b} = \Omega_{\rm b} / \Omega_{\rm m} = 0.157$

L* galaxies with M_h =10¹² M_{\odot} should have M_b ~1.6×10¹¹ M_{\odot}

and have $M^* \sim 3 \times 10^{10} M_{\odot}$

i.e. M_b (missing) ~ 4.3×M*

2024 Ischia Island (F. Nicastro)

The Baryon Phases in HDS

The Hot Phase: All the X-Ray Colors of the Milky Way

XMM-Newton RGS Spectrum of Mkn 421 (z=0.03)

CNMM and LIMM are (mostly) confined in the thin and thick disks.

Where is the HIMM?

λ(in Å) Vulcano-2024 Ischia Island (F. Nicastro)

Submitted to Science

The Hot Phase of the Milky Way

Q. Yu Z. Zheng

Motivation and sample selection

Motivation:

- Emission study, which is biased by the nearest and densest structures, hinted the presence of an extended hot halo;
- Detect the hot halo using absorption of Galactic OVII and OVIII lines, which is unbiased by the gas density and distance.

Sample selection:

- XMM-Newton/RGS data observed before Dec 2023;
- Bright AGNs and XRBs with CPRE>20 counts (SNRE>7.5) in the continuum at the wavelengths of OVII Kα, OVII Kβ, OVIII Kα, and OVIII Kβ;
- 30 disk (nearby XRBs) and 52 non-disk (distant XRBs and AGNs) LOSs are selected.

Zhou, Fang, Nicastro et al., 2024

Hot Gas in the halo: excess absorption against non-disk LOSs

- Exponential disk $n(R, z) = n_0 exp(-R/R_0) exp(-z/z_0)$, jointly fit the OVII and OVIII data of the disk sample under CIE;
- A pronounced excess against the non-disk LOSs: 7.1 σ for OVII and 4.2 σ for OVIII, 8.2 σ in combination;
- Indicating that the hot disk contributes to $20 \pm 4\%$ of the total Galactic OVII absorption against non-disk LOSs and $38 \pm 8\%$ of the OVIII absorption.

Modeling the Milky-Way's halo Hot Phase

The Total Baryon Mass of the Milky Way

- Cold $(6.5 \times 10^{10} M_{\odot})$ + hot gas;
- Gray shows the required baryonic mass predicted by the cosmological mean (assumed a DM halo of $(1 - 2) \times$ $10^{12} M_{\odot}$)
- Integrating the β model to $1.3r_{vir}$ could close the Galactic baryon census.

The Hot-CGM in external galaxies

- 30 background quasars with LLSs ($16.2 \le \log N_{HI} \le 19$) from Lehner+13
- 11/30 with multiple archival XMM-RGS, and 2/11 also Chandra-LETG, public observations
- 4/11 have SNRE≥4 (allows Poisson) both in RGS and LETG
- 3/4 show hints for OVII Ka absorption and have galaxy association

Galaxy-Halo properties

Table 2.	Properties	$of\ the$	LSS	and	the	X-ray	Halo
----------	------------	-----------	-----	-----	-----	-------	------

QSO (LLS #)	z_{LLS}	M_*	M_h	R_{vir}	ρ	[X/H]	$\log N_{OVI}$	b _{OVI}	
		$({ m in}~{ m log}{ m M}_{\odot})$	$({ m in}~{ m log}{ m M}_{\odot})$	(in kpc)	(in kpc)		(in cm^{-2})	(in km s^{-1})	
PG 1407+265 (#1)	0.6828	^a 10.9	12.4	^a 220	^a 91	^b -1.66	$^c13.99\pm0.06$	$^{c}28 \pm 10$	
PKS 0405-123 (#2)	0.1672	$^{d}10.3$	$^d11.9$	$^{d}183$	$^{d}117$	^b -0.29	$^c14.59\pm0.05$	$^{c}78\pm10$	
PG 1116+215 (#3)	0.1385	$^{e}10.3$	11.9	$^{f}192$	^g 127	^b -0.56	$^c13.85\pm0.05$	$^{c}47\pm10$	
X-ray Halo									
Weighted Averages	0.276	10.53	12.1	195	115	-0.514	14.29 ± 0.05	68 ± 10	
^{<i>a</i>} Burchett et al. (20	19). ⁶ Wo	tta et al. (201	9). ^{c} Fox et al	. (2013). ^d	Berg et al.	(2023).	^e Assumed to be	e the same as	

PKS 0405-123, given the same halo mass. f Keeney et al. (2017). g Lehner et al. (2013).

Stacked spectrum of the hot halo

Baryon Mass of the X-ray-halo up to 1 Rvir

30/05/24

Majority of hot gas surrounding galaxies is gravitationally bound

The Future of Hot X-ray Baryon Observations

WHIM/CGM Detections with NewAthena

Uncommonly WHIM-filament-rich l.o.s. out of 26 from Cen&Ostriker(06)

WHIM-filaments/CGM with NewAthena

of > 5-sigma WHIM-filament detections with NewAthena along 26 l.o.s.

Summary

- >20yr data from the Chandra-LETG and XMM-Newton-RGS provide strong evidence for at least 2 phases (but also super-virial?) of hot CGM in the Milky Way. The amount of hot gas is probably sufficient to close the MW baryon census within ~1-2 galaxy's virial radius.
- The HOT-CGM of external ~L* galaxies has finally been seen in X-ray absorption (Nicastro+23; Mathur+23) and, again, the full universal baryon fraction seems to be still relatively bound to the system (i.e. within one halo's virial radius or so).
- 2. This suggests that current hydrodynamical simulations use too strong AGN-feedback (thermal) recepies (blowing baryons and metals out to even 10 R_{vir}).
- 3. Athena (2032) will make a tomography of the WHIM/CGM and will detect ~100 filaments against bright AGNs and GRBs (absorption+emission)
- 4. NEW ATOMIC DATA OF X_RAY INNER-SHELL TRANSITIONS URGENTLY NEEDED TO PROPERLY IDENTIFY ALL ISM TRANSITIONS