Hubble constant estimation from GW and EM joint measures

Giulia Gianfagna - IAPS/INAF, Rome

and Luigi Piro (IAPS/INAF), Francesco Pannarale (Sapienza), Hendrik Van Eerten (University of Bath), Fulvio

Ricci (Sapienza), Geoffrey Ryan (Perimeter Institute for Theoretical Physics)

Vulcano Workshop 2024 - Frontier Objects in Astrophysics and Particle Physics

E PLANETOLOGIA SPAZIALI

Outline

- 1. Introduction: binary neutron star mergers and GW170817
- 2. Methods: joint fit of gravitational waves (GW) and electromagnetic (EM) domains
- 3. GW170817: two types of analysis
- 4. GW170817: the estimation of the Hubble constant (H₀)
- 5. Future prospects
- 6. Conclusions

Giulia Gianfagna

Binary neutron star (BNS) mergers: GW170817

3

lschia 28/05/2024

Binary neutron star (BNS) mergers: GW170817

Ischia 28/05/2024

GW170817 observations

lschia 28/05/2024

GW170817 jet type

Giulia Gianfagna

NAF

GW and afterglow modelling

A novel approach to asses these problems is a joint analysis of GW and EM domains:

Shared parameters!

Giulia

Joint fit and Ho estimation

Ischia 28/05/2024

Gianfagna Giulia

- Close source - Highly inclined

GW-only: $H_0 = 77^{+21}_{-10} \text{ km s}^{-1} \text{ Mpc}^{-1}$

How to break this degeneracy? With an independent dataset: Afterglow

Two kinds of analysis

- 1. GW and Afterglow light curve (GW+AG):
 - a. Wider jet
 - b. Less energy on the jet axis
- GW, afterglow light curve and centroid motion (GW+AG+C):
 - a. Collimated jet
 - b. Energetic

Parameter	GW-only	$\begin{array}{c} \mathrm{GW} + \mathrm{AG} \\ \mathrm{GJ} \end{array}$	GW+AG + C GJ
$\log_{10}E_0$	_	$52.31\substack{+0.82 \\ -0.80}$	$54.50\substack{+0.28\\-0.33}$
θ _c [°]	-	$7.73\substack{+0.86 \\ -0.80}$	$2.85^{+0.24}_{-0.20}$

Giulia Gianfagna

GW+AG: the Hubble constant

Gianfagna

Giulia

11

GW+AG+C: The Hubble constant

Ischia 28/05/2024

12

How likely is a new centroid measurement?

GW simulations of binary neutron star mergers (Petrov et al, 2022)

Generate the afterglow light curve and centroid motion

Considering VLBI sensitivity (24 uJy) and resolution (1.5 mas)		Ho uncertainty: 4 km/s/Mpc 10 km/s/Mpc				
		GW rates	GW+AG+C rates	GW+AG rates	~	
	05	~ 2027	$180^{+220}_{-100} \mathrm{yr}^{-1}$	$0.2^{+0.2}_{-0.1} \mathrm{yr}^{-1}$	$10^{+13}_{-6} \mathrm{yr}^{-1}$	

~10 events per year in **O5**.

At the end of O5 we could be able to reach the **SHOES** sensitivity of **1.5 km/s/Mpc** Ischia 28/05/2024

Conclusions

From GW and afterglow emission from **binary neutron star mergers**, we can estimate the Hubble constant, independently from any distance ladder:

- *θν-d_L* degeneracy: plays a crucial role in its estimation;
- Considering the complete dataset, the uncertainty on H₀ is still large (~4 km/s/Mpc), with respect to the *Planck* and SH0ES measurements (< 1.5 km/s/Mpc);
- We need more events (~30) to get to the SH0ES precision.

Gianfagna

Giulia

lschia 28/05/2024

Vulcano Workshop 2024 - Frontier Objects in Astrophysics and Particle Physics

THANK YOU for your attention!

Backup slides

INAF

Gamma Ray Bursts (GRBs)

Giulia Gianfagna

Off-axis observers

Afterglow modeling

Ischia 28/05/2024

Giulia Gianfagna

Viewing Angle

Structured Jet

Rotation Axis

19

lschia 28/05/2024

m

GW modeling Chirp mass Mass 1 1 m_1 M or 2 Mass ratio Mass 2 q m_2 3 Spin amplitude 1 a_1 Spin amplitude 2 4 a_2 5 θ_1 Tilt angle between the spin 1 and the orbital angular ιθ_Ν momentum θ_2 6 Tilt angle between the spin 2 and the orbital angular m_b momentum 7 $\phi_{1,2}$ Azimuthal angle between the spin vectors Azimuthal angle between total angular momentum 8 ϕ_{il} **EM+GW** and orbital angular momentum parameters 9 d_L Luminosity distance 10 DEC Declination FIXED to NGC 4993 11 RA **Right** ascension θ_{IN} 12 $\cos(\theta_{IN})$ Cosine of the inclination angle Inclination angle or 13 ψ Polarization angle Phase 14 φ Tidal deformability parameters of the primary Dimensionless 15 ΓÃ Λ_1 tidal parameters neutron star or -Tidal deformability parameters of the secondary δĂ 16 Λ_2 neutron star

NAF

Intrinsic

Extrinsic

Giulia Gianfagna

Hubble tension

~5 sigma **tension** between the **Hubble constant Ho** estimated with:

- Late time Universe (for example SH0ES);
- Early time Universe (for example *Planck*).

lschia 28/05/2024

Giulia Gianfagna

NAF

EM degeneracy

 θc : jet opening angle θv : viewing angle angle

GW+AG+C analysis GW+AG analysis

Giulia Gianfagna

Ischia 28/05/2024

NAF

GW+AG+C

VULCANO WORKSHOP 2024

Ischia 28/05/2024

Gianfagna

Giulia

INAF

Why are they so different?

Centroid motion strongly constraints θv !

lschia 28/05/2024

Giulia Gianfagna

Including a constant flux component at late times

Gianfagna

Giulia

25

NAF

Kilonova afterglow

VULCANO WORKSHOP 2024

Ischia 28/05/2024

Giulia Gianfagna

NAF

Future rates

lschia 28/05/2024