VULCANO WORKSHOP 2024

Frontier Objects in AstroPhysics and Particle Physics

May 26th - June 1st, Ischia, NA, Italy

Observations of Kilonovae

Andrea Rossi

NSMs can make at least the lanthanides (*r*-process elements)

Villar+ (ApJ, 2017)

Gamma ray bursts and mergers

Three-In-One Event: GW 170817, a short GRB, and a kilonova

Observational strategies to find EM counterparts

Expected multi-band follow-up counterparts are kilonovae and off-axis afterglows

- 1. **Tiling the GW sky localization area** using large FoV instruments
 - → not optimal for faint transients

Brocato et al. 2018

Example of 90 deg² coverage with the VLT Survey Telescope of the 310 deg² 90% cred. Area of GW150914 at 410 Mpc 2. **Galaxy Targetting** using small FoV instruments

Coulter et al. 2017

Example of galaxy targeting with 1-mt class telescope within the 31 deg² 90% cred. Area of GW170817 at 40 Mpc

IDENTIFY THE E.M. COUNTERPART CANDIDATES OF GW SOURCES

LVK GW source sky localization still $> \ensuremath{\mathsf{tens}}$ of $\ensuremath{\mathsf{deg}}^2$

Hundreds of optical candidates will be identify in sky surveys

Guaranteed telescope time to follow-up the most promising counterparts and characterize/ identify their nature

IDENTIFY THE E.M. COUNTERPART CANDIDATES OF GW SOURCES

GW190814bv: NS-BH merger

Ackley et al. 2020 A&A 643, A113, including several OAS members

large distance 267±52 Mpc 50% area: 5 deg 90% area: 23 deg S190814by - Sky Localization and Coverage

Wide-field survey

ATLAS and VST Pan-STARRS — PS1 Skycell: 0.4°x0.4° -20 VST FoV: 1°x1° -20 -25 (ICRS) ĕ -30° -30° -35° -35 26°x24 20°x18 -40° 1^h30^m 0^h30^m 20^m 2^h00^m 007 2^h00^m 1^h40^m 00^m 0^h40^m GOTO VISTA - GOTO FoV: 3.7°x4.9° VISTA FoV: 1.5°x1.2° -20 -20° -25 (ICRS) (ICRS) ص -30° -30 -35° -35 20°x18° 26°x24 -40° 20^m 0^h40^r 2^h00ⁿ 1^h30^m 00" 0130 2^h00^m 1^h40ⁿ 00 R.A. (ICRS) R.A. (ICRS) LALInference (90%) -- (10%)

(50%)

BAYESTAR (90%)

Targeted search of galaxies

GW190814bv: NS-BH merger

Ackley et al. 2020 A&A 643, A113, including several OAS members

Exclude a KN with large ejecta mass M>0.1 Msun no AT2017gfo but some brighter GRB/KN

• Limits on the tidal ejecta mass (Mt) and secular disk wind mass (Mw) obtained by comparing with the NS-BH KN model from Barbieri+19

Ackley et al. 2020 A&A 643, A113 See also Thakur et al., 2020 MNRAS 499, 3868

RESULTS S191213g

BNS event at ~200 Mpc

And a state of the state of the

Scaled F_A -

 X-shoote EFOSC2

FORS2

ALFOSO SPRAT

OSIRIS

3000

4000

5000

6000

7000

Rest frame wavelength (Å)

8000

9000

10000

GMOS

SN2019wxt: ultra-stripped SN resulted from the s KN candidates discovered by Pan-STARRS1:

"Panning for gold, but finding helium"

-20

-16

-12

-20 Ċ

-16

-12

Absolute AB Magnitude + Offset

A

R

D

• g

• g

5

● r-0.3

• i-1.0

10

z-1.5

15

y-2.5

.

i-1.0

• z-1.5

• z-1.5

15 0

Phase [days]

• r-0.3 • y-2.5

• r-0.3 • y-2.5

• g

• g

5

i-1.0

10

i-10

Agudo, et al.: A&A 675, A201 (2023)

First NSBH events: GW200115 and GW200105

LVK 2021, ApJ, 915L, 5A

What can we learn from short GRBs

- Precise localization of the EM counterpart of BNS/NS-BH mergers.
- We know the inclination of the system!
- The afterglow can dominate over the kilonova ...

... but is at least possible to put constraints on KN properties

Tanvir+2013

Constraints on kilonova properties

Rossi+20

Constraints on kilonova properties

Modelling of electromagnetic counterparts in the X-ray and UV/Optical/NIR bands

See also Ascenzi +19 on few cases

Future improvements: multi-wavelength modelling

State of the art models to explore the Kilonova parameter space, NMMA (pang+22), Redback (Sarin+23), Bajes (Breschi+21), see also xkn (Ricigliano+24)

via e.g. POSSIS (Bulla, 2023), RT (Kawaguchi+21), Kasen+18, Wollaeger+21, Metzger (18) ...

POSSIS

O 3D Monte Carlo radiative transfer code.

O Depends on the local values of density, electron fraction and temperature.

O Dynamical ejecta and post-merger disk wind.

O vwind = [0.05, 0.10, 0.15] c O mwind = [0.010, 0.050, 0.090, 0.130] M☉

O vdyn = [0.15, 0.20, 0.25] c O mdyn = [0.001, 0.005, 0.010] M☉

○ Ye = [0.15, 0.20, 0.25]

Density and electron fraction distribution

Gamma ray bursts and mergers

The burst duration shows a bimodal distribution interpreted to be (indirect) evidence of two classes of progenitors

Coulter+17

Gamma ray bursts

The burst duration shows a bimodal distribution interpreted to be (indirect) evidence of two classes of progenitors

GRB 200826A: the shortest collapsar event

Rossi et al., 2022, ApJ, 932, 1

GRB 050219: a long GRB in a passive galaxy

Rossi et al.: The host galaxy of GRB 050219A (z=0.211)

(adapted from Hunt et al. 2014)

GRB 211211A and 230307A: "Iong" GRBs followed by a KN

~40kpc (in projection) offset from its host

see also e.g., Gillanders+23, Yang+23

Levan et al., 2024, Nature 626, 737

GRB 230307A: a "long" GRB followed by a KN

Clear emission at both 29 and 61 days, consistent with the expected location of [Te III] (Hotekezaka+18). This line is also clearly visible in the scaled late-time spectrum of AT2017gfo (Gillanders+23,Hotekezaka+22)

~40kpc (in projection) offset from its host

see also e.g., Gillanders+23, Yang+23

Levan et al., 2024, Nature 626, 737

New (missed) population of merger events

BATSE data *Kouveliotu et al. 1993*

FUTURE PERSPECTIVES during O4 and O5 and ET

The problem is to localize EM counterparts, not their follow-up

Peak luminosity vs redshift

Moving on from Rossi et al., 2020, MNRAS 493, 3379

FUTURE PERSPECTIVES in the 30s during 3G interferometers and ELT/JWST

- A space observatory can detect the associated
- . GRB and its afterglow (if on-axis)
- See also Rastinejad +21

Afterglow brighter than KN, ok for smaller telescopes
Spectroscopic caracterization by JWST/ELTs
Redshift : from afterglow / host

THESEUS ensures:

- Immediate coverage of gravitational wave and neutrino source error boxes
 Real time sky localizations
- Temporal & spectral charaterization from NIR to gamma-rays

Summary

• The study of GRBs+Kilonovae allows to constrain physical properties of the merger

- progenitor (without GW signal), NS_NS vs NS-BH
- KN and GRB geometry and ejecta properties (masses, velocities, Ye)
- r-process abundances (cosmic chemical enrichment)
- New scenarios: (missed) population of merger-long GRBs
 - The simple duration is NOT an indicator of the origin of a GRB
 - keep an eye on missing SN, merger-like host-galaxy, offset from the host, GRB properties
 - We should expect a rate of GRBs from mergers larger than current estimates?
- Future perspectives: GRB missions in the 30s
 - GRBs allow a precise localization of the EM counterpart of GW-merger signals

THANK YOU