Difficulties in Modeling Kilonova Transients

adding complexity/reality to our simple stories drives closer connection to the physics frontier
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The Connection Between Neutron Star Mergers, Kilonovae and the
Origin of the r-Process

NS mergers have
long been
proposed as the
origin of GRBs
(Paczynski 1991)
and potential
sources of the r-
process (Lattimer

& Schramm 1974).

With GW170817,
we were able to
definitively test
these theories.
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Crashing neutron stars can make gamma-ray burst jets
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The ejecta produces radioactively powered transient

Jet—ISM Shock (Afterglow) Metzger &
Dulilies o) ] Berger 2012

Material is ejected during the initial
merger (e.qg. tidal ejecta) and in a
wind from the disk formed during the
merger. This disk can also drive a jet
(van Eerten talk).

The merger and disk wind ejecta are
composed of radioactive isotopes
whose decay can power a supernova-
like transient, a.k.a. kilonova.

This talk will focus on the modeling
(and difficulties therein) of these
kilonova transients. The LANL results
presented here were funded by an
internal LANL grant which | defended
at the 2018 Vulcano meeting)
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Inferring the r-Process Yield:

Cote et al. 2018

Table 1
e |nthe ﬂurry of results - hEstimatels of Ejecteccli Ma(sises for High-opaci;y S ;
. Lanthanide-rich Material (m4,,) and Medium-opacity “Winds” (m,,), Source
studying GW170817, from the( Rdeycgnt Literature for GW 170817 )
arange of €l ecta Reference Mayn [Mo] my, [Mg)]
masses were
. Abbott et al. (2017a) 0.001-0.01
predicted. Arcavi et al. (2017) .. 0.02-0.025
« Some of the Cowperthwaite et al. (2017) 0.04 0.01
dlfferences are due Chornock et al. (2017) 0.035 0.02
. Evans et al. (2017) 0.002-0.03 0.03-0.1
to using only a Kasen et al. (2017) 0.04 0.025
fraction of the data, Kasliwal et al. (2017b) >0.02 >0.03
but mode”ng Nicholl et al. (2017) 0.03
o Perego et al. (2017) 0.005-0.01 107> — 0.024
uncertainties are a Rosswog et al. (2017) 0.01 0.03
prominent aspect of Smartt et al. (2017) 0.03-0.05 0.018
the uncertainties. Tanaka et al. (2017) 0.01 0.03
Tanvir et al. (2017) 0.002-0.01 0.015
Troja et al. (2017) 0.001-0.01 0.015-0.03
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Uncertainties in Modeling Kilonova Light-Curves: Pushing the

Physics Frontier

* Initial Conditions: velocity distribution: m(v,0,t), v(m,0,t); composition,
entropy, additional power sources (magnetar, fallback), surrounding
medium (MHD, nuclear EOS, neutrinos, ...):

* Transport:

»Energy Deposition: nuclear decay properties (low energy nuclear
physics), v, e, a transport (plasma physics).

»>transport methods: flux limited diffusion, other closure methods that
include angular effects, methods that include full angular information:
e.g. discrete ordinate (e.g. S,), Implicit Monte Carlo+discrete diffusion
Monte Carlo (e.g. SuperNu), ...

»atomic physics: in LTE, NLTE
»|mplementation of the atomic physics: Sobolev, binning (expansion, ...)
»Interaction with matter: shocks (hydrodynamics), ...
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Blue versus Red Components Too Simplistic

« While true that the neutrino-driven wind
dynamical ejecta has a

lower electron fraction hypermassive neutron-rich
from the disk wind, it neutron star =45 tidal ejecta
may be too simple to say | r-process
that one is a “red” vs. |
“blue” component. : Ky
» Some of the disk ejecta main [\:\j =
can have low electron r-process
fractions and produce ‘*;

large amounts of
Lanthanides (e.g.
Ricigliano talk)

> Low electron fractions
do not preclude blue
emission.

accretion disk
outflow

black hole

accretion disk GRB jet Korobkin et al. 21
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Disk Ejecta Composition
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Different disks produce different electron fraction distributions
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Low Y, doesn’t mean the emission has to all be red

Series of UV light curves 39.5 | | | | | | |
from spherical ejecta w o |— m M1E1M2
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For example, 230307A, a long duration GRB with a

kilonova or something else entirely?
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If it looks like a duck, is it?

Kaltenborn et al. 2023
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Matching to a LIS S e e
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Kilonova oo Gillanders et al. 2023
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But can we explain these with Ca+CO features from a WD/NS
merger?

The features
and high
opacities might
be a
combination of

Call, CO
molecular lines
and dust.

Gillanders et al. 2023
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et al. 2018
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Conclusions

» The interpretation of kilonova observations requires understanding a broad
range of physics from the details of the ejecta properties to the detailed atomic
and plasma physics.

 Given the rarity of these events, understanding of this physics will rely heavily on
theoretical modeling of the ejecta properties, nuclear physics, atomic physics,
radiation transport and numerical methods.

* We need to compare to other transients and determine what observations can
distinguish between the different phenomena and, ultimately, constrain the
ejecta properties to determine the r-process production.

» Time Domain and Multi-Messenger astronomy is driving strong connections
between astronomy and physics and that is a good thing! (see 3rd TDAMM
meeting in Baton Rouge, Sep. 23-26)

« Gamma-rays will be important. NASA is working to determine its long-term
gamma-ray plan (FIGSAG). Lots of ways to contribute: MG17 meeting
(session), virtual telecons, in-person meeting at MTU (June 24-28)
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