

26 May 2024 - 1 June 2024
Ischia Island (Naples, Italy) Ischia Island (Naples, Italy)

XIX Vulcano Workshop ISChia Island (Naples, Italy)
 XIX Vulcano Workshop
 INAF - Island Strophysics and Particle Physics

Independent Constant Astrofisica e Planetologia Spaziali - Roma

INAF - Islituto di Astrofisica e Planetologia Spazia **INFINIES – SEARCH – SEARCH – SEARCH – SEARCH – SEARCH – ROW SIGNAL – ROWALD SIGNAL – ROWALD – ROWALD – ROWALD – ROMAN – ROWALD – ROMAN – ROWALD – ROMAN – ROM**

Testing Gravity with LAGEOS, LARES and Galileo

David Lucchesi and Massimo Visco

OUTLINE

- The LARASE and SaToR-G experiments
- **OUTLINE**
• The LARASE and SaToR-G experiments
• Geodetic satellites and Satellite Laser Ranging
• Precise Orbit Determination
• Measurements **CUTLINE
• The LARASE and SaToR-G experiments
• Geodetic satellites and Satellite Laser Ranging
• Precise Orbit Determination
• Measurements
• Lense Thirring**
-
- Measurements
	-
- **CUTLINE**
 CUTLINE
 COUTLINE
 **REPORENT ASSEMS AND SET ASSEMALL AND SET ASSEMALL TO A SET A PRAISE OF A Lense Thirring

CONSET ASSEMS 1997**
 CONSET ASSEMS 1997
 PERMIE ASSEMS ASSEMS A PREMIE PREMIE PREMIE PREMIE P • Preliminary measurements
• Preliminary measurements
• Clear Constrainties and Satellite Laser Ranging
• Preliminary measurement to constrain Yukawa-like interactions
• Preliminary measurement to constrain Yukawa-like **• Preliminary limit to algorithm CONTLINE**

• Prelimination

• Preliminary measurement to constrain Yukawa-like interaction

• Preliminary measurement to constrain Yukawa-like interaction

• Preliminary limit to α_1
 the LARASE and SaToR-G experiments

eodetic satellites and Satellite Laser Ranging

recise Orbit Determination

leasurements

• Lense Thirring

• Preliminary measurement to constrain Yukawa-like interactions

• Preliminar
	-
- GNSS Galileo constellation
	-
- Conclusions

actions

Ischia 27 May 2024

LARASE and SATOR_G

LARASE and SATOR_G
The LARASE (2013-2019) and SaToR-G (started on 2020) are two experiments, funded by the
Italian National Institute for Nuclear Physics (INFN-CSN2), devoted to measurements of the
gravitational interact **LARASE and SATOR_G**

The LARASE (2013-2019) and SaToR-G (started on 2020) are two experiments, funded by the

Italian National Institute for Nuclear Physics (INFN-CSN2), devoted to measurements of the

gravitational inter **LARASE and SATOR_G**
The LARASE (2013-2019) and SaToR-G (started on 2020) are two experiments, funded by the
Italian National Institute for Nuclear Physics (INFN-CSN2), devoted to measurements of the
gravitational interact **LARASE and SATOR_G**
The LARASE (2013-2019) and SaToR-G (started on 2020) are two experiments, funded by the
Italian National Institute for Nuclear Physics (INFN-CSN2), devoted to measurements of the
gravitational interact **COMBINATE COLUTE:**
 COMBINATE:
 CONDEG THE LARASE (2013-2019) and **SaToR-G** (started on 2020) are two experiments, funded by the

Italian National Institute for Nuclear Physics (INFN-CSN2), devoted to measurements of Earth. **LARASE and SATOR_G**
The LARASE (2013-2019) and SaToR-G (started on 2020) are two experiments, funded by the
Italian National Institute for Nuclear Physics (INFN-CSN2), devoted to measurements of the
gravitational interact **EXECUAL EXECUAL EXECUAL STANCE AND SATOR C**
The LARASE (2013-2019) and SaToR-G (started on 2020) are two experiments, funded by the
Italian National Institute for Nuclear Physics (INFN-CSN2), devoted to measurements of th **LARASE (2013-2019)** and **SATOR_G**
The LARASE (2013-2019) and **SaToR-G** (started on 2020) are two experiments, funded by the
Italian National Institute for Nuclear Physics (INFN-CSN2), devoted to measurements of the
gravit **EXAMBE 2013-2019)** and **SATOR_G**

The LARASE (2013-2019) and SaToR-G (started on 2020) are two experiments, funded by the

Italian National Institute for Nuclear Physics (INFN-CSN2), devoted to measurements of the

gravi

GEODETIC PASSIVE SATELLITES

LAGEOS (NASA, 1976) LAGEOS II (ASI/NASA, 1992)

LARES (ASI, 2012)

ILRS STATIONS

THERE STATIONS
There is an international network of laser tracking stations coordinated by the **International**
• The stations send laser pulses and observe the reflected signals with a telescope measuring the **ILRS STATIONS**

There is an international network of laser tracking station

Laser Ranging Service

• The stations send laser pulses and observe the reflected sign

round–trip time between Earth–bound laser Stations and c

EXECUTE:

• The stations send laser pulses and observe the reflected signals with a telescope measuring the

• The stations send laser pulses and observe the reflected signals with a telescope measuring the

• round–trip **ILRS STATIONS**
Free is an international network of laser tracking stations coordinated by the **International**
Ser Ranging Service
The stations send laser pulses and observe the reflected signals with a telescope measuring **EXECUTE 18 INTERT CONS**
Free is an international network of laser tracking stations coordinated by the **International**
Ser Ranging Service
The stations send laser pulses and observe the reflected signals with a telescope **EXECUTE:**

Boundary and international network of laser tracking stations coordinated by the **International**

Super Ranging Service

The stations send laser pulses and observe the reflected signals with a telescope measuri

Matera Station

PRECISE ORBIT DETERMINATION

PRECISE ORBIT DETERMINATION
Thanks to the accurate modelling of both gravitational and non–gravitational perturbations on the orbit of
these satellites to a range accuracy of less than 1 cm (rms \sim 1 mm) we are able to **PRECISE ORBIT DETERMINATION**
Thanks to the accurate modelling of both gravitational and non-gravitational perturbations on the orbit of
these satellites to a range accuracy of less than 1 cm (rms ~1 mm) we are able to det **PRECISE ORBIT DETERMINATION**
Thanks to the accurate modelling of both gravitational and non-gravitational perturbations on the orbit of
these satellites to a range accuracy of less than 1 cm (rms ~1 mm) we are able to det **EXECTSE ORBIT DETERMINATION**

Thanks to the accurate modelling of both gravitational and non-gravitational perturbations on the orbit of

these satellites to a range accuracy of less than 1 cm (rms ~1 mm) we are able to d **PRECISE ORBIT DETERMINATION**
Thanks to the accurate modelling of both gravitational and non-gravitational perturb
these satellites to a range accuracy of less than 1 cm (rms ~1 mm) we are able
Keplerian elements with abou Tracking Station

O_i calculated range (form SLR)

Ointeraction to the parameters vector (status vector + other parameters)

O_i calculated range (form SLR)

O_i calculated range (form SLR)

O_i calculated range (form **ERMINATION**

on-gravitational perturbations on the orbit of

s ~1 mm) we are able to determine their

form the data reduction of the satellites orbit

collaboration with "Observatorio de YEBES"

Residuals to minimized:

Residuals to minimized:

$$
R_i = O_i - C_i = \sum \frac{\partial C_i}{\partial P_j} \delta P_j + \delta O_i
$$

THE LENSE-THIRRING PRECESSION

THE LENSE-THIRRING PRECESSION
The so-called Lense-Thirring effect consists of a precession of the orbit of a satellite around
a primary produced by its rotation, i.e. by its angular momentum J (mass currents).
This prec **THE LENSE-THIRRING PRECESSION**
The so-called Lense-Thirring effect consists of a precession of the orbit of a satellite around
a primary produced by its rotation, i.e. by its angular momentum J (mass currents).
This prec **THE LENSE-THIRRING PRECESSION**
so-called Lense-Thirring effect consists of a precession of the orbit of a satellite around
imary produced by its rotation, i.e. by its angular momentum J (mass currents).
precession prod **THE LENSE-THIRRING PRECESSION**
so-called Lense-Thirring effect consists of a precession of the orbit of a
imary produced by its rotation, i.e. by its angular momentum *J* (mass cur
precession produces a secular effect in **ENSE-THIRRING PRECESSI**

rring effect consists of a precession of the orbit is rotation, i.e. by its angular momentum *J* (mass

a secular effect in two orbital elements:

of the ascending node (RAAN), Ω

icenter, ω

This precession produces a secular effect in two orbital elements:

-
-

$$
\left\langle \frac{d\Omega}{dt} \right\rangle_{sec} = \mu \frac{2G}{c^2 a^3} \frac{J_{\oplus}}{(1 - e^2)^{3/2}}
$$

$$
\left\langle \frac{d\omega}{dt} \right\rangle_{sec} = -\mu \frac{6G}{c^2 a^3} \frac{J_{\oplus}}{(1 - e^2)^{3/2}} \cos i
$$

so-called Lense-Thirring effect consists of a precession of the orbit of a satellite around mary produced by its rotation, i.e. by its angular momentum J (mass currents). precession produces a secular effect in two orbital elements: the right ascension of the ascending node (RAAN), Ω the argument of pericenter, ω			Equatorial plane	Line of nodes
$=\mu \frac{2G}{c^2 a^3} \frac{J_{\bigoplus}}{(1-e^2)^{3/2}}$	Rate (mas/yr)	LAGEOS	LAGEOS II	LARES
sec	Ω_{LT}	$+30.67$	$+31.50$	$+118.48$
	$\dot{\omega}_{LT}$	$+31.23$	-57.31	-334.68
$=-\mu \frac{6G}{c^2 a^3} \frac{J_{\oplus}}{(1-e^2)^{3/2}} \cos i$ sec	30 mas/yr \sim 180 cm/yr at the orbital height of the LAGEOS J_{\oplus}	-is the source of the effect		
∫ 1 in General Relativity ≀0 in Newtonian physics $\mu = \frac{1}{2}$	G, c -are two fundamental constants of nature -mean Keplerian elements a, e, i			
	Ischia 27 May 2024			

30 mas/ $yr \sim 180$ cm/yr at the orbital height of the LAGEOS

SYSTEMATIC ERRORS

• The Lense-Thirring precession is very small compared to the classical precession of the orbit due to the deviation from the spherical symmetry for the distribution of the Earth's mass, or even compared to the same relati **SYSTEMATIC ERRORS**
The Lense-Thirring precession is very small compared to the classical precession of the orbit due to
the deviation from the spherical symmetry for the distribution of the Earth's mass, or even compared **SYSTEMATIC ERRORS**
The Lense-Thirring precession is very small compared to the classical precession of the orbit due to
the deviation from the spherical symmetry for the distribution of the Earth's mass, or even compared **SYSTEMATIC E**
The Lense-Thirring precession is very small compared
the deviation from the spherical symmetry for the distrition
to the same relativistic **Schwarzschild** precession prodons/yr for LAGEOS)
 $\frac{d\Omega}{dt}$ = μ **SYSTEMATIC ERRORS**

ing precession is very small compared to the classical precession is very small compared to the classical precessivity for the distribution of the Earth's

ivistic Schwarzschild precession produced by **ERRORS**

ed to the classical precession of the orbit due to

tribution of the Earth's mass, or even compared

produced by the mass of the primary (≈ 3350
 $\frac{\cos I}{(1-e^2)^2} \left\{ J_2 + J_4 \left[\frac{5}{8} \left(\frac{R_{\oplus}}{a} \right)^2 (7 \sin^2 I$ orbit due to

u compared

y (≈ 3350
 $\frac{\left(1+\frac{3}{2}e^2\right)}{\left(1-e^2\right)^2} + \dots$ **SYSTEMATIC ERRORS**
 EXAMPLE ERRORS
 **EXAMPLE EXAMPLE EXAMPLE EXAMPLE SERVES ADMOND TO THE CONSTRANTIC SURVEY FOR THE USE OF THE STAND STAND FOR THE STAND FOR THE STANDARY CONSULTING THE CAGEOS)
 = \mu \frac{2G}{c^2 a^3} \frac{f_{** The Lense-Inferring precession is very small compared to the cassical precession of the orbit due to
the same relativistic Schwarzschild precession produced by the mass of the primary (\approx 3350
mas/yr for LAGEOS)
 $\left| \frac{$

The deviation from the spherical symmetry for the distribution of the Earth's mass, or even compared
to the same relativistic **Schwarzschild** precession produced by the mass of the primary (
$$
\approx 3350
$$

mas/yr for **LAGEOS**)

$$
\frac{\left|\frac{d\Omega}{dt}\right|_{sec} = \mu \frac{2G}{c^2 a^3} \frac{J_\oplus}{(1 - e^2)^{3/2}}\right|_{c} \left|\frac{\dot{\Omega}^{Class}}{a} \approx -\frac{3}{2} n \left(\frac{R_\oplus}{a}\right)^2 \frac{\cos I}{(1 - e^2)^2} \left\{J_2 + J_4 \left[\frac{5}{8} \left(\frac{R_\oplus}{a}\right)^2 (7 \sin^2 I - 4) \frac{(1 + \frac{3}{2}e^2)}{(1 - e^2)^2}\right] + ...\right\}}{\text{Lense-Thirring}}
$$

These-Thirring
These properties, the correct modelling of the even zonal harmonics ($\ell = \text{even}, \, \text{m} = 0$) represents the main
challenge in this kind of measurements, since they have the same signature of the relativistic effect but
much larger amplitudes. These harmonics are the main sources of systematic errors
Ischia 27 May 2024

MODELING EARTH GRAVITATIONAL FIELD

MODELING EARTH GRAVITATIONAL FIELD
The Earth does not have the shape of perfect sphere, therefore its potential cannot be modelled as
that of a point mass. The shape of the Geoid can be approximated using spherical harm **MODELING EARTH GRAVITATIONAL FIELD**
The Earth does not have the shape of perfect sphere, therefore its potential cannot be modelled as
that of a point mass. The shape of the Geoid can be approximated using spherical harm

MODELING EARTH GRAVITATIONAL FIEL
\nhe Earth does not have the shape of perfect sphere, therefore its potential can
\nnat of a point mass. The shape of the Geoid can be approximated using spherical
\n
$$
V = \frac{GM}{r} \left(1 + \sum_{n=2}^{n_{\text{max}}} \left(\frac{a}{r}\right)^n \sum_{m=0}^{n} \overline{P}_{nm}(\sin \phi) \left[\overline{C}_{nm} \cos m\lambda + \overline{S}_{nm} \sin m\lambda\right]\right),
$$
\n
$$
\overline{C}_{10,0}
$$
\nWe considered several static models for the
\nbackground gravitational field of the Earth
\nTo reduce the impact of the harmonics, we modeled
\nthe first 10 even zonal harmonics exploiting their

-
-

ANALYSIS METHOD

ANALYSIS METHOD
• By solving a linear system of three equations in three unknowns, we can solve for the relativistic precession while reducing the impact in the measurement of the non perfect knowledge of the Earth's gra **relativistic precession while reducing the impact in the measurement of the non perfect**
Relativistic precession while reducing the impact in the measurement of the non perfect
knowledge of the Earth's gravitational field **ANALYSIS METHOD**
By solving a linear system of three equations in three unknowns, we can solver
elativistic precession while reducing the impact in the measurement of the nor
knowledge of the Earth's gravitational field:

By solving a linear system of three equations in three unknowns, we can solve for the
relativistic precession while reducing the impact in the measurement of the non perfect
knowledge of the Earth's gravitational field:

$$
\hat{\Omega}_2^{L1} \delta J_2 + \hat{\Omega}_4^{L1} \delta J_4 + \hat{\Omega}_{LT}^{L1} \mu + \cdots = \hat{\delta} \hat{\Omega}_{res}^{L1}
$$

$$
\hat{\Omega}_2^{L2} \delta J_2 + \hat{\Omega}_4^{L2} \delta J_4 + \hat{\Omega}_{LT}^{L2} \mu + \cdots = \hat{\delta} \hat{\Omega}_{res}^{L2}
$$

$$
\hat{\Omega}_2^{L2} \delta J_2 + \hat{\Omega}_4^{L2} \delta J_4 + \hat{\Omega}_{LT}^{L2} \mu + \cdots = \hat{\delta} \hat{\Omega}_{res}^{L2}
$$

$$
\hat{\Omega}_{res}^{Cmb} = 50.17 \text{ mas/yr}
$$

$$
\hat{\Omega}_{cR}^{comb} = 50.17 \text{ mas/yr}
$$

$$
\hat{\Omega}_{cR}^{comb} = \hat{\Omega}_{res}^{0.12} + k_1 \hat{\delta} \hat{\Omega}_{res}^{1.2} + k_2 \hat{\delta} \hat{\Omega}_{res}^{L2}
$$

$$
k_1 \approx 0.345
$$

$$
k_2 \approx 0.073
$$

$$
k_2 \approx 0.073
$$

$$
k_3 \approx 0.073
$$

$$
k_4 \approx 0.345
$$

$$
k_5 \approx 0.073
$$

$$
k_6 \approx 0.073
$$

$$
k_7 \approx 0.0000
$$

$$
k_8 \approx 0.0000
$$

$$
k_9 \approx 0.0000
$$

$$
k_1 \approx 0.0000
$$

$$
k_2 \approx 0.0000
$$

$$
k_1 \approx 0.0000
$$

$$
k_2 \approx 0.0000
$$

$$
k_3 \approx 0.0000
$$

$$
k_4 \approx 0.0000
$$

$$
k_5 \approx 0.0000
$$

$$
k_6 \approx 0.0000
$$

$$
k_7 \approx 0.0
$$

LENSE-THIRRING MEASUREMENT

We performed an analysis of about 6.5 years (2359 days) from MJD 56023, that is from April 6th 2012, and we computed the residuals on the orbit elements of LAGEOS, LAGESOS II and LARES

approaching the 1% level, arXiv:1910.01941, oct 2019

D. Lucchesi et al.: 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites, Universe 2020, 6, 139

ISL - YUKAWA-LIKE INTERATION
• A Yukawa-like potential produces a radial acceleration $\Re = -\frac{G_{\infty}M_{\oplus}}{a^2}(\frac{a}{r})^2 \alpha (1 + \frac{r}{\lambda})e^{-\frac{r}{\lambda}}$ that gives secular effect only on two orbital parameters. The effects are **ISL - YUKAWA-LIKE INTERATION**
A Vukawa-like potential produces a radial acceleration $\Re = -\frac{G_m M_{\oplus}}{a^2} \left(\frac{a}{r}\right)^2 \alpha \left(1 + \frac{r}{\lambda}\right) e^{-\frac{r}{\lambda}}$ that gives secular effect only on two orbital parameters. The effects are **ISL - YUKAWA-LIKE INTERATION**
A **Yukawa-like potential produces a radial acceleration** $\Re = -\frac{G_{\omega}M_{\oplus}}{a^2} \left(\frac{a}{r}\right)^2 \alpha \left(1 + \frac{r}{\lambda}\right) e^{-\frac{r}{\lambda}}$ that
gives secular effect only on two orbital parameters. The effect **ISL - YUKAWA-LIKE INTERATION**
potential produces a radial acceleration $\Re = -\frac{G_{\infty}M_{\oplus}}{a^2}(\frac{a}{r})^2 \alpha \left(1 + \frac{r}{\lambda}\right)e^{-\frac{r}{\lambda}}$ that **THERETION**
 $\Re = -\frac{G_{\infty}M_{\oplus}}{a^2} \left(\frac{a}{r}\right)^2 \alpha \left(1 + \frac{r}{\lambda}\right) e^{-\frac{r}{\lambda}}$ that

fects are function of the mean

motion *n*. $G_{\infty}M_{\bigoplus}/a_{\lambda}^2$ $(1 + \lambda)^2$ $\frac{r}{2}$ that a^2 $\left(\frac{1}{r}\right)^{a}$ $\left(\frac{1}{r}\right)^{c}$ $\frac{a}{r}$ that a_1^2 (a), r_1^2 + 1, 1 $r \int_{0}^{\infty}$ $(1 + \lambda)$ and $\frac{2}{(4-t)^2}$ $\frac{r}{2}$ $\frac{1}{4}$ $\alpha \left(1 + \frac{r}{\lambda}\right) e^{-\frac{r}{\lambda}}$ that
on of the mean λ^{j} and λ^{j} $e^{-\frac{r}{\lambda}}$ that ا د *ا* **- YUKAWA-LIKE INTERATION**

al produces a radial acceleration $\Re = -\frac{G_{\infty}M_{\oplus}}{a^2} (\frac{a}{r})^2 \alpha \left(1 + \frac{r}{\lambda}\right) e^{-\frac{r}{\lambda}}$

y on two orbital parameters. The effects are function of the m

of the true anomaly f and of th **WA-LIKE INTERATION**
 a radial acceleration $\Re = -\frac{G_{\infty}M_{\oplus}}{a^2} \left(\frac{a}{r}\right)^2 \alpha \left(1 + \frac{r}{\lambda}\right)$

bital parameters. The effects are function of

omaly f and of the mean motion *n*.
 $\frac{1-e^2}{n\alpha e} \Re \cos f$
 $-\frac{1}{\lambda} \Re \$ **• YUKAWA-LIKE INTERATION**

al produces a radial acceleration $\Re = -\frac{G_{\infty}M_{\oplus}}{a^2} \left(\frac{a}{r}\right)^2$

y on two orbital parameters. The effects are function

of the true anomaly f and of the mean motion *n*.
 $\dot{\omega}(\alpha,\lambda) = -$ **LIKE INTERATION**

al acceleration $\Re = -\frac{G_{\infty}M_{\oplus}}{a^2} \left(\frac{a}{r}\right)^2 \alpha \left(1 + \frac{r}{\lambda}\right) e^{-\frac{r}{\lambda}}$ that

arameters. The effects are function of the mean

f and of the mean motion *n*.

 $\left(\frac{r}{\lambda}\right)e^{-\frac{r}{\lambda}}$ that

i the mean
 $\frac{1-e^2}{1+e\cos f}$ $+\frac{r}{\lambda}$) $e^{-\frac{r}{\lambda}}$ that
of the mean
 $\frac{(1-e^2)}{1+e\cos f)}$
ted by General A Yukawa-like potential produces a radial acceleration $w = -\frac{a^2}{a^2} (\frac{1}{r})^a (1 + \frac{1}{\lambda})e^{-\lambda}$ that
gives secular effect only on two orbital parameters. The effects are function of the mean
orbital parameters a, e, of t

Argument of pericenter

$$
\dot{\omega}(\alpha,\lambda) = -\frac{\sqrt{1-e^2}}{n\,a\,e} \Re \cos f
$$

 1_{∞} (cos $u(f,e)$ na^{**} $e(1-e^2)$ e^2 $\Re\left(\frac{\cos\theta}{\cos\theta}-\sqrt{1-e^2\sin f}\sin\theta\right)$ $\cos u(f, e)$ $\frac{1}{\sqrt{1-\frac{3}{2}}}$ \cdots \cdots Mean anomaly $\dot{M}(\alpha,\lambda) = n + \frac{1}{n\alpha}$

 $\frac{(1-e^2)}{(1+e\cos f)}$

Ischia 27 May 2024 **Relativity**

PRELIMINARY ANALYSIS: LAGEOS II ARGUMENT OF PERICENTER AND MEAN ANOMALY **NALYSIS: LAGEOS II**
 NTER AND MEAN ANOMALY

pricenter and the mean anomaly of LAGEOS II or

dice errors introduced by gravitational field
 $\frac{L^2}{res}$ ($k \approx -0.1235$) allows to *cancel* the errors due to J
 $\frac{0.05544}{$ **ALYSIS: LAGEOS II**
 ER AND MEAN ANOMALY

enter and the mean anomaly of LAGEOS II on

rrors introduced by gravitational field
 $k \approx -0.1235$) allows to *cancel* the errors due to J_2
 $obs_{tot} = \varepsilon obs_{GR} + obs_{GP} + obs_{NGP} + \cdots$
 $-$

- The analysis was done using argument of pericenter and the mean anomaly of LAGEOS II on a time span of 13.7 years to reduce systematic errors introduced by gravitational field Figure 2.11.11 (20111111)

Figure mean anomaly of LAGEOS II on

ic errors introduced by gravitational field
 $\frac{L^2}{2}$ ($k \approx -0.1235$) allows to *cancel* the errors due to J_2
 $\frac{D}{2}$
 $\frac{D}{2}$
 $\frac{D}{2}$
 $\frac{D}{2}$ Ficenter and the mean anomaly of LAGEOS II on
ic errors introduced by gravitational field
 $\frac{L^2_{res}}{L^2_{res}}$ ($k \approx -0.1235$) allows to *cancel* the errors due to J_2
 $obs_{tot} = \varepsilon obs_{GR} + obs_{GP} + obs_{NGP} + \cdots$
 $\underline{\varepsilon - 1 \approx (+0.35 \pm 2.$
- The use of two observables $obs = M_{res}^{L2} + k\omega_{res}^{L2}$ ($k \approx -0.1235$) allows to *cancel* the errors due to J_2

$$
obs_{tot} = \varepsilon \, obs_{GR} + obs_{GP} + obs_{NGP} + \cdots
$$

$$
\varepsilon - 1 \cong (+0.35 \pm 2.42) \times 10^{-3} \pm 0.8 \cdot 10^{-2}
$$

 $I_{GB} + ...$
 $\frac{1.8 \cdot 10^{-2}}{1.8 \cdot 10^{-2}}$

Uschia 27 May 2024 $\frac{2}{2}$, (k ≅ -0.1235) allows to *cancel* the errors due to J_2
 $obs_{tot} = ε \, obs_{GR} + obs_{GP} + obs_{NGP} + \cdots$
 $ε-1 ≅ (+0.35 ± 2.42) × 10^{-3} ± 0.8 ⋅ 10^{-2}$

A previous measurement in 2014 was made

ssing a non-linear fit:
 $ε-1 = (-0.12 ±$

$$
\epsilon - 1 = (-0.12 \pm 2.10) \cdot 10^{-3} \pm 2.5 \cdot 10^{-2}
$$

COMPARISATION WITH PREVIOUS RESULTS

MEASURE OF $α_1$

- **•** In some theories that contain vector fields or other tensor fields, in addition to the metric tensor $g_{\mu\nu}$, the global distribution of matter in the Universe **could select a preferred rest frame** for the local gra **MEASURE OF**
In some theories that contain vector fields or other tensor fields
the global distribution of matter in the Universe **could select** :
gravitational interaction.
Damour and Esposito-Farese have shown that th **•** In some theories that contain vector fields or other tensor fields, in addition to the metric tensor $g_{\mu\nu}$, the global distribution of matter in the Universe **could select a preferred rest frame** for the local gra **MEASURE OF** α_1
In some theories that contain vector fields or other tensor fields, in addition to the metric tensor $g_{\mu\nu}$
the global distribution of matter in the Universe **could select a preferred rest frame** fo **OF** α_1
or fields, in addition to the metric tensor $g_{\mu\nu}$,
select a preferred rest frame for the local
rbits of some artificial satellites have the
parameter down to the 10⁻⁶ level.
at of the cosmic background r **•** In some theories that contain vector fields or other tensor fields, in addition to the metric tensor $g_{\mu\nu}$, the global distribution of matter in the Universe **could select a preferred rest frame** for the local gra **IDEASURE OF** α_1
In some theories that contain vector fields or other tensor fields, in addition to the metric tensor $g_{\mu\nu}$,
the global distribution of matter in the Universe **could select a preferred rest frame** which of matter in the Universe **could select a preferi-**
 posito-Farese have shown that the orbits of some **a**

de improvements in the limit of the α₁ parameter down

y **preferred rest frame** we consider that of the = −α₁ k sin (n_⊕t − λ_{PF}) + … $k = -2n \frac{W B_0}{c^2} \cos \beta_{PF}$

do of the Sun with respect to this preferred frame with orientation.

do of the Sun with respect to this preferred frame with orientation by the and set a par
- potential to provide improvements in the limit of the α_1 parameter down to the 10⁻⁶ level.
-
- **Damour** and **Esposito-Faresc** have shown that the orbits of some **artificial satellites** have the potential to provide improvements in the limit of the α_t parameter down to the 10⁻⁶ level.

 As gravitationally **p**

$$
(\dot{\omega} + \dot{M})_{\alpha_1} = -\alpha_1 k \sin(n_{\oplus} t - \lambda_{PF}) + \cdots \qquad k = -2n \frac{w v_{\oplus}}{c^2} \cos \beta_{PF}
$$

Exel.
 Exploring Transfirst and Solution
 Ischia 27 May 2024
 Ischia 27 May 2024 ecliptic coordinates ($\lambda_{PF} = 171^\circ$. 55, $\beta_{PF} = -11^\circ$. 13)

ANALYSIS WITH LAGEOS II

ANALYSIS WITH LAGEOS II

- **•** To analyze the data we used a lock-in with f_{θ} 2.738 × 10⁻³ day⁻¹ and phase λ_0 λ_{PF} with λ_0 = 223.83°

 This preliminary result represents the best constraint in α_1 in the field of the Earth ba (MJD=48932).
- **ANALYSIS WITH LAGEOS II**
• To analyze the data we used a lock-in with f_{θ} 2.738 × 10⁻³ day⁻¹ and phase λ_0 λ_{PF} with λ_0 = 223.83°
• This preliminary result represents the best constraint in α_1 in th **AGEOS II**
ay⁻¹ and phase λ_0 - λ_{PF} with λ_0 = 223.83°
in the field of the Earth based on a pure
 $\frac{(1.6 \cdot 10^{-6})}{\lambda_0}$

The G4S.2 PROJECT

Solutions to the extended the set of the SI

ISCAN CONTENT CONTENTS ISCAN TO THE SIDE OF T **•** The G4S.2 PROJECT
• The G4S_2.0 project, founded by the Italian Space Agency (ASI), aims to perform a set of measurements in the field of gravitation with the satellites of Galileo Full Operational Capability (FOC) co The G4S.2 PROJECT

The G4S.2 PROJECT

The G4S_2.0 project, founded by the Italian Space Agency (ASI), aims to perform a set of

measurements in the field of gravitation with the satellites of Galileo Full Operational

Cap **CAPABILITY CAPABILITY**
 CAPABILITY: The G4S 2.0 project, founded by the Italian Space Agency (ASI), aims to perform a set of

measurements in the field of gravitation with the satellites of Galileo Full Operational

Ca The G4S.2 PROJECT

The G4S_2.0 project, founded by the Italian Space Agency (ASI), aims to perform a set of

measurements in the field of gravitation with the satellites of Galileo Full Operational

Capability (FOC) cons **are CAS. 2 PROJECT**
 a The G4S.2.0 project, founded by the Italian Space Agency (ASI), aims to perform a set of measurements in the field of gravitation with the satellites of Galileo Full Operational Capability (FOC) **•** The G4S.2 PROJECT
• The G4S_2.0 project, founded by the Italian Space Agency (ASI), aims to perform a set of measurements in the field of gravitation with the satellites of Galilco Full Operational Capability (FOC) co **The G4S.2 PROJECT**

are G4S_2.0 project, founded by the Italian Space Agency (ASI), aims to perform a set of

surements in the field of gravitation with the satellites of Galileo Full Operationa

ability (FOC) constellat **• In Eq. 2.** The GAS. 2 PROJECT
 EGAS_2.0 project, founded by the Italian Space Agency (ASI), aims to perform a set of

surements in the field of gravitation with the satellites of Galileo Full Operational

ability (FO **EXECT:** All project, founded by the **Italian Space Agency (ASI)**, aims to surrements in the field of **gravitation** with the satellites of **Galileo Fiability (FOC)** constellation and, in particular with **GSAT0201** and **GS** • The G4S_2.0 project, founded by the Italian Space Agency (ASI), aims to perform a set of
measurements in the field of gravitation with the satellites of Galileo Full Operational
Capability (FOC) constellation and, in pa Example in the field of **gravitation** with the satellites of **Galileo Full Opera**
 Example illuminated in the CAT0201 and **GSAT0202**, experimetatively high eccentricity ($\cong 0.16$) with respect to that ($\cong 0$) of t

- -
	- Torino
	-
-

GRAVITATIONAL RED SHIFT

• The Gravitational Redshift GRS is the change in frequency of e.m. waves travelling in a variable gravitational field: i.e. the relative frequency change in two clocks operating in different gravitational potentials. GRAVITATIONAL RED SHIFT
The Gravitational Redshift GRS is the change in frequency of e.m. waves travelling in a variable
gravitational field: i.e. the relative frequency change in two clocks operating in different gravi potentials . **GRAVITATIONAL RED SHIFT**

The Gravitational Redshift GRS is the change in frequency of e.m. waves travelling in a variable

gravitational field: i.e. the relative frequency change in two clocks operating in different gra **NAL RED SHIFT**

in frequency of e.m. waves travelling in a variable

inge in two clocks operating in different gravitational
 $z = (1 + \alpha) \frac{\Delta U}{c^2}$

it $\alpha = 0$ in GR

o gravitational Redshift Experiment with eccentric

P. in frequency of e.m. waves travelling in a variable

nge in two clocks operating in different gravitational
 $z = (1 + \alpha) \frac{\Delta U}{c^2}$

it $\alpha = 0$ in GR

o gravitational Redshift Experiment with eccentric
 P. Delva, et al., P

GRAVITATIONAL RED SHIFT	
The Gravitational Redshift GRS is the change in frequency of e.m. waves travelling in a variable gravitational field: i.e. the relative frequency change in two clocks operating in different gravitational potentials.	
potential difference	$z = \frac{\Delta v}{v} = \frac{\Delta U}{c_{\leftarrow}^2}$ \n $z = (1 + \alpha) \frac{\Delta U}{c^2}$ \n
Our goal is to improve present limit α Galileo gravitational Redshift Experiment with eccentric sATellites (GREAT), 2018	
SYRTE: $\alpha = (0.19 \pm 2.48) \times 10^{-5}$	<i>P. Dekv, et al., Phys. Rev. Letter, 121, 231101 (2018)</i>
ZARM: $\alpha = (4.5 \pm 3.1) \times 10^{-5}$	<i>P. Dekv, et al., Phys. Rev. Letu., 121, 231102 (2018)</i>
A careful reconstruction of time dependence of the gravitational field is needed.	
Ischia 27 May 2024	

ent with eccentric $\frac{1(2018)}{1102(2018)}$
Ischia 27 May 2024

- SYRTE: $\alpha = (0.19 \pm 2.48) \times 10^{-5}$ P. Delva, et al., Phys. Rev. Letter, 121, 231101 (2018)
- ZARM: $\alpha = (4.5 \pm 3.1) \times 10^{-5}$ S. Herrmann, et al., Phys. Rev Lett., 121, 231102 (2018)

MAIN PERTURBATIONS

-
- **MAIN PERTURBATIONS**
• Also in this analysis Precise Orbit Determination plays a main role.
• Galileo satellites have a complex structure and the Non-Gravitational perturbations are
important in particular the reduction of **•** Also in this analysis Precise Orbit Determination plays a main role.
• Galileo satellites have a complex structure and the Non-Gravitational perturbations are important in particular the reduction of the Solar Radiatio **important in particular of the Solar Radiation of the Solar Radiation Pressure effect is a main cole.**
 Calileo satellites have a complex structure and the Non-Gravitational perturbations are important in particular the challenge.

MODEL TO REDUCE PERTURBATION

MODEL TO REDUCE PERTURBATION
Here we show the residuals for two keplerian elements (in black)
and the predicted effect (in red) of a preliminary model for the
Direct Solar Radiation Pressure. **MODEL TO REDUCE PERTURBATION**
Here we show the residuals for two keplerian elements (in black)
and the predicted effect (in red) of a preliminary model for the
Direct Solar Radiation Pressure. **MODEL TO REDUCE PERTUR**
Here we show the residuals for two keplerian elements (in black
and the predicted effect (in red) of a preliminary model for the
Direct Solar Radiation Pressure.

MEASUREMENT OF GRAVITATIONAL RED-SHIFT

- **MEASUREMENT OF GRAVITATIONAL RED-SHIFT**
• We are ready to repeat the measurements carried out under GREAT project, but the information from ESA on routine clock bias correction (*keplerian* correction) is missing **INEASUREMENT OF GRAVITATIONAL RED-SHIFT**
We are ready to repeat the measurements carried out under GREAT project, but the
information from ESA on routine clock bias correction (*keplerian* correction) is missing
We used t
- **MEASUREMENT OF GRAVITATIONAL RED-SHIFT**
• We are ready to repeat the measurements carried out under GREAT project, but the information from ESA on routine clock bias correction (*keplerian* correction) is missing
• We use **MEASUREMENT OF GRAVITATI**
We are ready to repeat the measurements carried out
information from ESA on routine clock bias correction
We used the data from ESA to study how to remove un
the satellite clock.
ILRS Central Bur
- **IMEASUREMENT OF GRAVITATIONAL RED-SHIFT**

 We are ready to repeat the measurements carried out under GREAT project, but the
 information from ESA on routine clock bias correction (*keplerian* correction) is **missing**
 months • We are ready to repeat the measurements carried out under GKEAI project, but the information from ESA on routine clock bias correction (*keplerian* correction) is missing • We used the data from ESA to study how to remov information from ESA on routine clock bias correction (*kepierian* correction
We used the data from ESA to study how to remove unwanted disturbance
the satellite clock.
ILRS Central Bureau has approved an **observation camp**
- Ischia 27 May 2024

CONCLUSIONS

- Satellite Laser Ranging technique represents a powerful tool to study Gravitation in the Weak-Field and Slow-Motion Limit of GR in the Field of the Earth. **CONCLUSIONS**
Satellite Laser Ranging technique represents a powerful tool to study Gravitation in
the Weak-Field and Slow-Motion Limit of GR in the Field of the Earth.
The gravitational effects are measured as residuals i
- **CONCLUSIONS**
• Satellite Laser Ranging technique represents a powerful tool to study Gravitation in
the Weak-Field and Slow-Motion Limit of GR in the Field of the Earth.
• The gravitational effects are measured as residua **CONCLUSIONS**

Satellite Laser Ranging technique represents a powerful tool to study Gravitation in

the Weak-Field and Slow-Motion Limit of GR in the Field of the Earth.

The gravitational effects are measured as residual
- Intellite.

With precision

Very often the

mination is not

S satellite have

ks.

Ischia 27 May 2024 **CONCLUSIONS**
• Satellite Laser Ranging technique represents a powerful tool to study Gravitation in
the Weak-Field and Slow-Motion Limit of GR in the Field of the Earth.
• The gravitational effects are measured as residua **CONCLUSIONS**
Satellite Laser Ranging technique represents a powerful tool to study Gravitation in
the Weak-Field and Slow-Motion Limit of GR in the Field of the Earth.
The gravitational effects are measured as residuals i **CONCLUSIONS**

Satellite Laser Ranging technique represents a powerful tool to study Gravitation in

the Weak-Field and Slow-Motion Limit of GR in the Field of the Earth.

The gravitational effects are measured as residual sufficient. • The gravitational effects are measured as residuals in the orbital elements, i.e. the difference between the measured and the calculated evolution of the satellite.
• A crucial point to obtain valuable measurements is to The gravitational effects are measured as residuals in the orbital elements, i.e. the
difference between the measured and the calculated evolution of the satellite.
A crucial point to obtain valuable measurements is to est
-