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Fundamental Motivations

o General Relativity works very well at several cosmological and
astrophysical scales.

o The discovery of gravitational waves 1s the Prova Regina for such a theory.

o Black holes observations, phenomenology and theory.

o However, shortcomings at IR and UV scales need improvements and
revisions of the Einstein picture.

o No final evidence for DM and DE at fundamental particle level.

o No self-consistent theory of Quantum Gravity.

o Several alternative to GR questioning its foundations in view to explain both
phenomenology and shortcomings.

o Extended Theories of Gravity are not alternatives but extensions of GR
which must be recovered in some limit.

S. Capozziello, V.F. Cardone, A. Troisi, “Dark energy and dark matter as curvature effects”,
JCAP 08 (2006) 001
S. Capozziello, M. De Laurentis, “Extended Theories of Gravity” Phys. Rept. 509 (2011) 167.



A comprehensive picture of gravity theories
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Astrophysical Motivations

Explaining the observed galactic and extragalactic dynamics using
gravitational potentials derived from Extended Gravity without DM .

o Possible new fundamental gravitational radii which play analogue role
in the case of weak gravitational field at galactic scales, as the
Schwarzschild radius for strong gravitational field in the vicinity of some
massive object (we have IR and UV gravitational radii).

o New gravitational radii come from the further degrees of freedom of
Extended Gravity.

o Explaining extragalactic phenomena, such as the baryonic Tully-Fisher
relation (BFT) of gas-rich galaxies and the fundamental plane (FP) of
elliptical galaxies without the DM hypothesis.



Extended Theories of Gravity

Extended Theories of Gravity work very well in cosmology at early and
late epochs to address Inflation and Dark Energy issues

-A.A. Starobinsky, Phys. Lett.B 991, 99 (1980)
-S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011),
-S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).

They have been proposed to explain galactic and extragalactic dynamics
without introducing dark matter.

As simple choice, one assumes a generic function f(R) of the Ricci scalar
R (in particular, analytic functions) and searches for a theory of gravity
with a reliable behavior at small and large scale lengths.

These theories need to be confirmed at different scales: for short
distances, Solar system, spiral galaxies and galaxy clusters, besides
cosmology.



J(R) gravity
Let us start from the action

A= [ doy=gf(R) + L]

The field equations are

1
R’uy — §gluyR —

Let us consider power - law case f(R) = foR"

with fo a dimensional constant.



f(R) gravity

» An important point is related to the choice of the power-law action for f(R)
that could appear non-natural in order to discuss deviations with respect to
GR. Being n any real number, it is always possible to recast the f(R)

ower-law function as
y f(R) o RI*

» If we assume small deviation with respect to GR, that is |g] << 1, 1t is
possible to re-write a first-order Taylor expansion as

R ~ R+ eRlogR + O(€?)

» one can control the magnitude of the corrections with respect to the
Einstein gravity. This Lagrangian has been investigated from Solar System
up to cosmological scales. In particular, applications to gravitational waves
(Capozziello et al. 2008, Astropart. Phys.), binary star systems (De
Laurentis et al. 2012, MNRAS), and neutron stars have been investigated
(Astashenok, Capozziello, Odintsov 2014, PRD, 2015 JCAP).



f(R) gravity

Taking into account the gravitational field generated by a pointlike source
and solving the field equations in the vacuum case, we write the metric as:

ds® = A(r)dt* — B(r)dr? — r*d)?

Combining the 00 — vacuum component and the trace of the field equations
in absence of matter, we get the equation:

/ @ _ 1 B f/(R);OO o
it reduces to: S ( goo R> i 2f(R) ’ goo =0
Roo(r) 2n — 1A(T)R(T) n—1dA(r)dIn R(r)

6n - 2B(r) dr dr

and the trace equation reads: 2
—nNn

3n

OR™(r) R"(r)



f(R) gravity

Expressing Roo and R 1n terms of the above metric, field equations become a
system of differential equations for A(r) and B(r).

A physically motivated hypothesis 1s assuming

1 20 (r)
A — — ]
") B(r) " c?
A general solution is _ .
27 T

The parameter i1s:

12 —Tn—1—+/36n* + 12n3 — 83n2 4+ 50n + 1
B 6n? — 4n + 2

B

Let us search now for a fundamental motivation for power-law f(R) gravity



The Noether Symmetry Approach

Let us assume a static spherically symmetric metric of the form

ds® = A(r)c?dt* — B(r)dr® — C(r)d)?
We recast the action considering the dimensionless curvature y =R/R|

63

A= g [ 100 =M= 0l v=gd's

The Ricci scalar can be expressed as

_ A" 20" A'CT AP O 2
R=—+—/+
A C ' AC 242 22 C

where the prime 1s the derivative with respect to ». Varying with respect to y
gives the Lagrange multinlier

dflx)
\ = reake f




The Noether Symmetry Approach

The point-like Lagrangian reduces to
L?W AfX 0/2
VA | 2C

—VA[@2L3Y, + Cx)fx — Cf]

Assuming the regime R. >> r and the related weak field approximation, the
last two terms are both much smaller than L,/ f,. This allows to rewrite the
Lagrangian as

+ [y A'C' + Cf A+ 2A 1, O | +

LL =
L%W AfX 0/2

71 |2 + LA C' + C A+ 2Af,,C'X +2A




The Noether Symmetry Approach

Solving the Noether vector equation means to find out the functions a;
which constitute the components of the Noether vector

LxL =a;VyL+a;VyL =0

0 , 0
T O0Go

X = a;
° 0gq; " 0q;

A general form of the Noether vector, related to the Killing equations of the
model, 1s:

] — klA +p17
o = k20+p27
a3 = k3x + ps.

where k;, p; are constants



The Noether Symmetry Approach

The Lie condition 1s satisfied for

o = {2(1—n)/€A, 0, kx}, fFix) =x"

That is for any f(R)= R™ a Noether Symmetry exists !
The related constant of motion X 18

20 — Oéivqu
— L2,n(n — DEA™Y2Cx" 2 [2(n — 1) AY' — A'X]

The main statement is:
For any conserved quantity a characteristic radius exists!

MOND is recovered for n=3/2, C(r) = r° and the constant of motion is

3
o = §krg2;lM




Velocity

Modified gravity and flat rotation curves of spiral galaxies
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Observational constraints for r. from BTF relation
and circular velocity

» Starting from the above solution, an agreement between theoretical and
observed rotation curves of low surface brightness galaxies has been
obtained for f = 0.817.

» This can be framed into the BTF relation with the aim to show that the
new fundamental gravitational radius . can account for missing matter in
galaxies.

» Specifically, the empirical BTF relation is a universal relationship

between the bazyonic mass of a galaxy and its rotational velocity of the
form Mp o« v.'. This follows from the fact that luminosity L traces

baryonic mass Mp through the mass-to-light ratio y. The BTF relation
can be recovered from power-law f(R) gravity.



The data from the Baryonic Tully-Fisher relation of gas
rich galaxies as a test for ACDM and MOND considering

D - distance of the galaxy,
V. - rotational velocity,
M+ - mass of the stars,

M, - mass of the gas

We used observational data by McGaugh et al., PRL

(2011), ApJ (2020) see:
http://www.astro.umd.edu/~ssm/data/gasrichdatatable.txt
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Observational constraints for r. from BTF relation
and circular velocity

Circular velocity of a point mass, in the R" gravity potential, can be found
in the standard way, that is

o
vi(r) = ’rd—

dr

which gives




Observational constraints for r. from BTF relation
and circular velocity

Considering the Newtonian limit of f(R) gravity and discarding higher order
terms than O(2), the field equations for a perfect-fluid energy-momentum

tensor of dust (p = 0) become:

V2 — — — f(0)V2R®) = xp

—3f"(0)V2R® — R®?) = xp

p - the mass density

X = 87G/c* - the gravitational coupling
R® - the Ricci scalar assumed up to the second order approximation



Observational constraints for r. from BTF relation
and circular velocity

Let us proceed step by step to demonstrate that BTF is given by the
gravitational radius r,.

1. the Noether symmetries select a power-law for f(R) gravity. This 1s a
general form of f(R) function showing symmetries.

2. In particular, we assume f{y) = y", after introducing the dimensionless
quantity y := Ly/R, where R is the Ricci scalar, Ly is the length fixed by the
parameters of the theory, and » any real number.



Observational constraints for r. from BTF relation
and circular velocity

3. The trace of field Egs. can be rewritten as

100 x — 2£ () + 312, Af(x) = TG L

L . ct
By substituting the power-law, 1t becomes:

(n=1)  8rGML3
2 X T M
X" (n—2)—3nLy, ;> 2.3
Here, we are assuming the weak field approximation with d/dy ~ 1/y,
A ~ — 1/r2 , and matter density p ~ M/r.

The second term 1n the Lh.s. of this Eq. ) In
1s larger than the first if Rr* <

Q

2—n

In this approximation, the Ricc1 scalar corresponds to the Gaussian
curvature and then R =~ R.? where R. is the Gauss curvature radius.
Immediately we have R. >> r, and then 8nG M

(n_l) ~ —
i SnCQ’rLQ(n b




Observational constraints for r. from BTF relation

and circular velocity
4. At the second order, the Ricci scalar 1s Re _ V29— °"V.a

that can be approximated as R = —2®/(c2r2) = 2a/(c2r), with @ the
gravitational potential and a the acceleration. This gives:

c2r (87TGM> 1/(n=1)
213,

a =~ >
3ncar

~ _C(Qn—4)/(n—1)T(n—Z)/(n—l)L]T/IZ (GM)l/(n—l)

which converges to a MOND-like accelerationa ec1/r ifn—2=—(mn—1),
that means n = 3/2.

(aoGM)1/2

r

5. With this value of n, we get the MOND relation ja = —

In other words, the weak field limit of f{R) power-law gravity gives
MOND as a particular case.



Observational constraints for r. from BTF relation
and circular velocity

According to this derivation, the above characteristic length r. of R" gravity
can be related to the MOND acceleration constant ao using the following
expression GM
Te = A ——
ao
Assuming that rotation curve is flat within the measurement uncertainties at
some finite radius rg 1.€. V(79 = vy, then rycould be also related to a certain

MOND acceleration ar> ao. This gives VvaoGM ao
T f = — — T¢
af af

Hence, the BTF relation of R" gravity expressed i terms of MOND
accelerations 1s 4a0v?

M =

Ga? |1+ (1 B) (@y_




Observational constraints for r. from BTF relation
and circular velocity

We have to point out that, in the case of BTFR for spiral galaxies,
McGaugh (2011) has shown that, instead of standard MOND acceleration

constant ap, one should use a slightly different, empirically calibrated
constant a (where ag = 0.8a), while the formula is unchanged. Therefore, for
our calculations, we use the following expression:

4
4avf

Gas |1+ (1—p) <E>B_
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Observational constraints for r. from BTF relation

and circular velocity
- we draw these lines at M, (v graph:

(1) MOND =vi/(a g)

(i1) R" My=4 avi/(g ai? (1 + (1-) (alar)P)?)
three R" cases: n =3/2, 2, 7/2 (correspond to 5 = 0.518, 0.667, 0.817)
ao - constant for point source in infinity
a - constant for spiral systems
In the case of spiral galaxies, we have a instead of ao

empirical calibration is ap = 0.8a
(111) ACDM Mb — 0.17 Mvir, Vf: Vyir

- formula for ACDM is taken from the paper McGaugh 2012, AJ:
Vll” (4 6 105 Msun km_ S3) Vi r
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sample of galaxies), in MOND, R" gravity for values of n = 1.5, 2 and 3.5
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The Fundamental Plane of Elliptical Galaxies

The three parameters of FP: surface brightness I, effective radius r. and
circular velocity v, for a sample of elliptical galaxies from Burstein et al 1997.



Basic theory of Fundamental Plane

The Fundamental

relation  between  the
properties of these galaxies:

logre=alogoo+blogl.+c

r. - effective (half-light) radius (the
radius within which half of the

galaxy’s luminosity is contained)
oy - central velocity dispersion

I. - mean surface brightness within
the effective radius

Plane of
elliptical galaxies is an empirical
global

- there 1s the so-called "tilt" of the
fundamental plane, with respect to
the wvirial plane expectation,
meaning that the coefficients of its
equation (a,b,c) differ from those
predicted by virial theorem (VT):
when written in logarithmic form,
the two planes appear to be tilted
by an angle of ~ 15° .

- VT prediction: a=2,b=-1
- Estimates from data (Bender et
al. 1992): a=1.4,b=-0.85

(see e.g.: G. Busarello, M. Capaccioli, S. Capozziello, G. Longo, E. Puddu,
The relation between the virial theorem and the fundamental plane of
elliptical galaxies, Astron. Astrophys. 320, 415 (1997))



Recovering the fundamental plane from f(R)
-To recover the FP using R" gravity, we have to find relations between FP
parameters and values of f(R) potential. In this sense, the three addends of FP
have to be connected to f(R) parameters:
1. addend with r.: correlation between re and r¢ (r. — from R” potential)
2. addend with ay: correlation between gy and Vyir (Vvir - virial velocity in R")
3. addend with Ie: correlation between Ie and re (through the r./re ratio)
- for the mass distribution, we take into account the Hernquist profile:

p(r)=aM/ Q2 nr(r+a)), where a =r/(1 +2)

see L. Hernquist, ApJ 356, 359 (1990)



The Data

- We use the data given in Table I by Burstein, Bender, Faber,
Nolthenius, Global relationships among the physical properties of stellar
systems, Astron. J. 114, 1365 (1997).

These data are the result of the collected efforts over the years

- data in ASCI format are given in table 'metaplanetabl’ see
arXiv:astro-ph/9707037

Obj Obj Dist log Ve, logo. logr., logl,
Name ID# Code (Mpc) Obs Used (kpc) Lopc™®

column (5): log ve (km/s) m @ 6 @ 6 ©® O ®
NGC221 8 1 07 1903 1903 —0.95 347

column (6): log o9 (km/s) NGC315 14 1 1072 2546 2546 149 186
NGC720 56 1 358 2392 2392 084 234

column (7); 10g Ie (kpc) NGC777 64 1 994 2542 2542 113 216
NGC 821 67 1 377 2298 2298 092 206

1

NGC 1399 100 264 2491 2491 0.74 2353

column (8): log I (Lsun/ pc?)

for elliptical galaxies, the circular velocity inside effective radius is ve(r.)
= @y, for other stellar systems ve # oy



Results

- we plot the graph v (re) for ellipticals and for other galaxies

450 ] | . Newtonian

400 | ellipticals * 1 contribution
other gal. ~

correction term from f(R)

80 100

Circular velocity ve as a function of effective radius re for a sample of
galaxies listed in Table 1 by Burstein et al 1997.



Results

The empirical FP relation log . = a log oo + b log I. + ¢ from f(R)

re - effective (half-
light) radius

oo - central velocity
dispersion

I. - mean surface
brightness within 7.

FP of elliptical
galaxies with
calculated circular
velocity:
dependence of FP
parameters (a,b) on
parameters of f(R)
gravity.

a log vctheor +blogl,
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Discussion and Conclusions

» From f(R) # R it is possible to derive a further gravitational radius other
than the Schwarzschild one.

» This radius plays an analog role, in the case of weak gravitational field at
galactic scales (IR scales) as the Schwarzschild radius in the case of
strong gravitational field in the vicinity of compact massive objects (UV
scales).

» The radius emerges as a conserved quantity from Noether’s symmetries
that exist for any power-law f(R) function.

» Using this new gravitational radius, f(R) gravity is able to explain the
baryonic Tully-Fisher relation of gas-rich galaxies without DM
hypothesis.

» MOND is a particular case of f(R) gravity in the weak field limit.



Discussion and Conclusions

» The same radius 1s useful to address the FP of elliptical galaxies.

» The range 0.5< f < 0.8 (corresponding to 1.5 <n < 3.5) 1s in a good
agreement with observations. These values agree with observational
constraints on S obtained by fitting FP and MOND. We do not need
DM to explain baryonic Tully-Fisher relation, and even more, ACDM 1is
not in satisfactory agreement with observations.

» For elliptical galaxies r. is proportional to re

» Considering the definition of r., we can say that the effective radius
(defined photometrically as the radius containing half of the luminosity
of a galaxy) is led by gravity.

» In perspective, the whole galactic dynamics can be addressed by
Extended Gravity.

» Work in progress for Faber-Jackson relation, galactic potentials,
Boltzmann-Vlasov relation, and Virial Theorem.
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