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GRAVITATIONAL WAVES IN GR (1)
• In high-energy astrophysics, the main sources of gravitational 

waves (GWs) are compact binary systems: black holes (BHs) and 
neutron stars (NSs).

3



GRAVITATIONAL WAVES IN GR (2)
• On September 14, 2015 at 09:50:45 UTC, the two Ligo detectors 

announced the first direct observation of gravitational waves (GWs) 
resulting from the merging of two black holes 
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Event  
“GW150914”  M1 ∼ 29M⊙ M2 ∼ 36M⊙  J ℰ ∼ 1047 ∼ 3M⊙c2



GRAVITATIONAL WAVES IN GR (3)
• Map of current GW detectors
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Ground-based interferometers: 
sensitivity ranges from some tens of hertz to about one kilohertz



GRAVITATIONAL WAVES IN GR (4)
• Observing runs
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Sensitivity  expressed in megaparsecs
As of May 2024, GW observatories have  
detected more than 90 GW events from 

 BH-BH, NS-NS, BH-NS mergers
1 Mpc= 3.26 million light years

Andromeda Galaxy is about 0.78 Mpc from the Earth



GRAVITATIONAL WAVES IN GR (5)
• Second-generation:  LIGO-India interferometer 

• Third-generation: Einstein Telescope and Cosmic Explorer  
(sensitivity:  from about 5 Hz to several kHz) 

• Space-borne low-frequency detectors: LISA and TianQin 
(sensitivity: from some μHz to about one-tenth of a hertz) 

• Radio telescope pulsar timing arrays (PTAs) 
(frequency band goes from 100 to 1 nHz)
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EINSTEIN-CARTAN THEORY (1)
• Einstein-Cartan (EC) theory has been formulated to extend the 

concepts of general relativity (GR) to the microphysical realm. 

•Quantum intrinsic spin carried by elementary particles is 
described geometrically by means of the torsion tensor. 
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Energy-momentum tensor 

CurvatureMass-energy

Spin Torsion

Spin density tensor



• EC field equations

EINSTEIN-CARTAN THEORY (2)
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where

combined 
energy-momentum tensor

metric energy-momentum tensor

( )χ = 16πG/c4

Einstein tensor constructed   
with the Christoffel symbols 

Ĝαβ ≡
Γ̂μ

αβ

Contribution due to spin 
(  canonical spin  

angular momentum  tensor)
ταβ

γ ≡

 Tαβ =
2
−g

δ ( −gℒm)
δgαβ



BLANCHET-DAMOUR APPROACH IN EC THEORY (1)
• Spinning, weakly self-gravitating, weakly stressed, and slowly 

moving sources  (i.e., spinning PN sources). 
• Motion and radiation of binary systems in their early inspiralling 

stage. 

•GW generation problem: relating the asymptotic gravitational-
wave form generated by some isolated spinning PN source and  
which we observe via a detector (located in the wave zone of the 
source), to the material content of the source, i.e., its tensor , 
using some suitable approximation methods.

Θαβ
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BLANCHET-DAMOUR APPROACH IN EC THEORY (2)
Let us introduce a set of harmonic coordinates .  The spatial 
part  of the spacetime manifold is decomposed in  the  following 
domains: 

xμ = (ct, x)
ℝ3
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Near (or inner) zone    
r < ri

Spinning  
PN source

Exterior zone r > d

PN is valid 
( )v/c ≪ 1

MPM is valid

Overlapping region
Wave zone r ≫ λ

 d < ri ≪ λ
r = |x | = δijxixj

PN source:  d ≪ λ

Multipole expansion: metric is parametrized  
by STF multipole moments

PM: gαβ = ηαβ + Ggαβ
1 + … = ηαβ +

∞

∑
n=1

Gngαβ
n



BLANCHET-DAMOUR APPROACH IN EC THEORY (3)
• Blanchet-Damour formalism is based on two approximation 

schemes: MPM and PN methods. It allows to solve 
approximately the GW generation problem 

• Solution of GW generation problem 
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: mass-type STF radiative multipole moment of order lUL

: current-type STF radiative multipole moment of order lVL

Physical Observables

gμν
ext = gμν

ext(UL, VL) wave zone

Multi-index notation, where L denotes the multi-index  made of l spatial indices. Hence i1i2…il IL = Ii1i2…il

•  are given as integral expressions involving the source variables;  
in particular,  they are given as integrals extending over combined  
stress-energy tensor  of the material source. 

UL, VL

Θαβ



BLANCHET-DAMOUR APPROACH IN EC THEORY (4)
• 1PN-accurate asymptotic gravitational radiation amplitude (or 

waveform) 

• Total radiated power (or luminosity or flux) of the source at 1PN 
order
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APPLICATION TO A BINARY NS SYSTEM (1)
• N weakly self-gravitating, slowly moving, widely separated 

spinning bodies.  
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 Uij =
d2

dt2

N

∑
A=1

mA r⟨i
A r j⟩

A 1 +
1
c2

3
2

v2
A − ∑

B≠A

GmB

|rA − rB |
+

1
14c2

d2

dt2 (r2
Ar⟨i

A r j⟩
A ) −

20
21c2

d
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A r j
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N
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A −
2
3
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4
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d
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A + (rA × sA)j ri
A]} + O (c−3),

mass quadrupole moment

mass octupole moment

current quadrupole moment

 Uijk =
d3

dt3 ∑
A

mAr⟨i
A r j

Ark⟩
A + O (c−2),

Vij =
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A rk
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A +

1
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A
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Ar j
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1PN accurate



APPLICATION TO A BINARY NS SYSTEM (2)
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Uijkl =
d4

dt4

N

∑
A=1

mAr⟨i
A r j

Ark
Arl⟩

A + O (c−2),

 Vijk =
d3

dt3

N

∑
A=1

[mAr⟨i
A r j

Aϵk⟩lprl
Avp

A + 2(rn
Asq

A δ⟨i
n r j

Aδk⟩
q − rA ⋅ sA δ⟨i

n r j
Aδk⟩

n + sq
A r⟨i

A r j
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q )] + O (c−2) .

mass -pole moment24

current octupole moment



APPLICATION TO A BINARY NS SYSTEM (3)
• Let us consider a binary NS system 
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m1 = 1.60M⊙
m2 = 1.17M⊙

|s1 | = 1.21 × 1057ℏ
|s2 | = 4.73 × 1056ℏ
Rav = 4.69 × 108 m
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where for � “ 1 the Newtonian eccentricity e0 vanishes
(leading to circular orbits), whereas in the limiting case
� Ñ 0 we have e0 Ñ 1. Therefore, given these premises,
the initial conditions are specified once we assign M ,
Rin, and �.

A crucial point of our analysis regards the spins of
the NSs. These are modeled as follows

szi “ n~4⇡
3

ˆ
6Gmi

c2

˙3

, i “ 1, 2, (130)

where, following Ref. [66], n “ 1044 m´3 is estimated
as the inverse of the nucleon volume. Therefore, if the
masses m1 and m2 are known, then the spin compo-
nents sz1 and sz2 can be immediately calculated.

In order to gain useful information about the binary
system’s dynamics, we determine the minimum, aver-
age, and maximum values of the relative radius (i.e.,
Rmin, Rav, Rmax). Furthermore, to perform some consis-
tency checks, we define a set of parameters, which must
be less than 1 due to the hypotheses underlying our
model; first of all, the slow-motion condition demands
that we compute the maximum values vmax

1 {c, vmax
2 {c

attained by the ratios v1{c, v2{c, respectively (the ve-
locities v1 and v2 of the two bodies can be obtained
starting from Eq. (112)); to verify whether the two bod-
ies remain widely separated, we calculate

↵i “ 12Gmi{c2
Rmin

, i “ 1, 2; (131)

finally, we monitor the strength of the gravitational field
through the factor

� “ GM

c2Rmin
. (132)

The values of the aforementioned variables, along
with other quantities characterizing the binary NS sys-
tem to be investigated in Sec. 5.3.2, are listed in Table
1.

5.3.2 Discussion of the results

We consider a gravitational system consisting of two
NSs, whose parameters can be found in Table 1.

The order of magnitude of the spin components sz1
and sz2 (in units of ~), physically representing the num-
ber of neutrons inside the NSs, is consistent with the
values reported in the literature (which are of the order
of 1057 neutrons) [107]; moreover, the magnitude of the
parameters vmax

1 , vmax
2 ,↵1,↵2, � confirms that the slow-

motion, wide-separation, and weak-field hypotheses are
fulfilled.

PARAMETERS UNITS VALUES

m1 Md 1.60
m2 Md 1.17
M Md 2.77
sz1 ~ 1.21 ˆ 1057

sz2 ~ 4.73 ˆ 1056

dso Mpc 40.00
Rg m 4.11 ˆ 103

Rin Rg 2.00 ˆ 105

� 0.70
e0 0.51

Rmin Rg 0.65 ˆ 105

Rav Rg 1.14 ˆ 105

Rmax Rg 2.00 ˆ 105

vmax
1 c 2.03 ˆ 10´3

vmax
2 c 2.79 ˆ 10´3

↵1 1.07 ˆ 10´4

↵2 7.81 ˆ 10´5

� 1.54 ˆ 10´5

Table 1 List of parameters of the binary NS system analyzed
in Sec. 5.3.2.

PLOT_1.pdf

PLOT_2.pdf

PLOT_3.pdf

Fig. 1 Plots of the functions Rptq, EF ptq, and EH ptq. Upper
panel : time evolution of the modulus of the relative radius (cf.
Eq. (120)); the horizontal red dashed line corresponds to its
average value (see Table 1). Middle panel : trend of EF ptq (see
Eq. (133a)). Lower panel : behavior of EH ptq (cf. Eq. (133b));
the horizontal red dashed line represents the modulus of the
mean EC contribution, which amounts to 9.31 ˆ 10´53.

In order to estimate the EC contributions to the GR
flux and waveform, we define (cf. Eqs. (124)–(128))

EF ptq ”
ˇ̌
ˇ̌FECptq
FGRptq

ˇ̌
ˇ̌ , (133a)

EH ptq ” |H GR
11 ptq| ´ |H EC

11 ptq|. (133b)

The above quantities, along with the function Rptq rep-
resenting the relative distance of the NSs, are shown in
Fig. 1. From the plot of EF , we see that the spin e↵ects
become more significant at the closest point of approach
between the objects, where the gravitational field be-
comes more intense. This agrees with the spirit of EC
theory, whose importance is expected to increase in the
strong-gravity regime. In our example, the average con-
tributions predicted by EC theory are smaller than GR
ones by a factor of 10´23. This di↵erence is consistent

EC contribution to GR flux

EC contribution to GR waveform



APPLICATION TO A BINARY NS SYSTEM (4)
• Plots 
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Fig. 1 Plots of the functions Rptq, EF ptq, and EH ptq. Upper
panel : time evolution of the modulus of the relative radius (cf.
Eq. (125)); the horizontal red dashed line corresponds to its
average value (see Table 1). Middle panel : trend of EF ptq (see
Eq. (138a)). Lower panel : behavior of EH ptq (cf. Eq. (138b));
the horizontal red dashed line represents the modulus of the
mean EC contribution, which amounts to 9.31 ˆ 10´53.

Fig. 2 Gravitational waveform H11 as a function of
the azimuthal angle '. The '-intercepts occurr at ' “
0.31⇡, 0.81⇡, 1.34⇡, 1.79⇡.

6 Conclusions

This work configures as a natural continuation of the
research program started out in Ref. [66], where we
have solved the GW generation problem in EC model
at 1PN level by resorting to the Blanchet-Damour for-
malism. This general treatment finds an explicit appli-
cation here, where the matter source is described by the
Weyssenho↵ fluid.

The structure of the paper is sketched in Fig. 3. In
Sec. 2, we have summarized the key steps of the previ-
ous article. In this framework, the spinning PN source
is supposed to be a generic hydrodynamical fluid sys-
tem. For this reason, in Sec. 3.1, we have introduced
the fundamental pillars of the EC hydrodynamics veri-
fying the simplifying hypothesis that the torsion tensor
has a vanishing trace, i.e., S↵�

� “ 0. Subsequently, we
have modeled the spin e↵ects inside matter by employ-
ing the Weyssenho↵ model of a semiclassical ideal spin-
ning fluid supplemented by the Frenkel condition (see
Sec. 3.2). The study of the Weyssenho↵ fluid within
the PN approximation scheme, representing a funda-
mental tool of the Blanchet-Damour formalism, is con-
tained in Sec. 3.3. Both at 0PN and at 1PN level, the
dynamics is ruled by a system of partial and integro-
di↵erential equations, whose resolution is extremely de-
manding. A less involved pattern can be obtained if we
employ the point-particle procedure, which allows to
characterize the fluid dynamics in terms of ordinary
di↵erential equations by going from a continuous pic-
ture to a discrete description of the system (see Sec.
4). We have then derived, within EC theory and for
the particular case of binary systems, the 1PN formula
(116) of the center of mass position and the general
expressions (118)–(122) of the radiative multipole mo-
ments. Starting from these results and the conserva-
tion law (105) of the spin vector, we have resorted to
the Damour-Deruelle solution in GR (which has been
briefly discussed in Sec. 5.1) to set up a hybrid approach
for dealing with binaries of spinning PN NSs, where we
have provided some numerical estimates of the EC con-
tributions to the flux and the waveform (see Secs. 5.2
and 5.3).

This paper contains some new theoretical results,
which can be summarized as follows:

(1) development of a general pattern (subject to the
hypothesis S↵�

� “ 0) for the hydrodynamics in EC
theory, where the spin e↵ects are modeled through
the tensors �↵� and ⌧µ⌫� (cf. Eq. (30));

(2) PN investigation of the Weyssenho↵ fluid, which
predicts at 0PN level that: paq the translational mo-
tion matches the Newtonian Euler equation (see Eq.
(76b)); pbq the rotational dynamics reduces to a ho-

Function R(t)

Function
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where for � “ 1 the Newtonian eccentricity e0 vanishes
(leading to circular orbits), whereas in the limiting case
� Ñ 0 we have e0 Ñ 1. Therefore, given these premises,
the initial conditions are specified once we assign M ,
Rin, and �.

A crucial point of our analysis regards the spins of
the NSs. These are modeled as follows

szi “ n~4⇡
3

ˆ
6Gmi

c2

˙3

, i “ 1, 2, (135)

where, following Ref. [66], n “ 1044 m´3 is estimated
as the inverse of the nucleon volume. Therefore, if the
masses m1 and m2 are known, then the spin compo-
nents sz1 and sz2 can be immediately calculated.

In order to gain useful information about the binary
system’s dynamics, we determine the minimum, aver-
age, and maximum values of the relative radius (i.e.,
Rmin, Rav, Rmax). Furthermore, to perform some consis-
tency checks, we define a set of parameters, which must
be less than 1 due to the hypotheses underlying our
model; first of all, the slow-motion condition demands
that we compute the maximum values vmax

1 {c, vmax
2 {c

attained by the ratios v1{c, v2{c, respectively (the ve-
locities v1 and v2 of the two bodies can be obtained
starting from Eq. (117)); to verify whether the two bod-
ies remain widely separated, we calculate

↵i “ 12Gmi{c2
Rmin

, i “ 1, 2; (136)

finally, we monitor the strength of the gravitational field
through the factor

� “ GM

c2Rmin
. (137)

The values of the aforementioned variables, along
with other quantities characterizing the binary NS sys-
tem to be investigated in Sec. 5.3.2, are listed in Table
1.

5.3.2 Discussion of the results

We consider a gravitational system consisting of two
NSs, whose parameters can be found in Table 1.

The order of magnitude of the spin components sz1
and sz2 (in units of ~), physically representing the num-
ber of neutrons inside the NSs, is consistent with the
values reported in the literature (which are of the order
of 1057 neutrons) [107]; moreover, the magnitude of the
parameters vmax

1 , vmax
2 ,↵1,↵2, � confirms that the slow-

motion, wide-separation, and weak-field hypotheses are
fulfilled.

PARAMETERS UNITS VALUES

m1 Md 1.60
m2 Md 1.17
M Md 2.77
sz1 ~ 1.21 ˆ 1057

sz2 ~ 4.73 ˆ 1056

dso Mpc 40.00
Rg m 4.11 ˆ 103

Rin Rg 2.00 ˆ 105

� 0.70
e0 0.51

Rmin Rg 0.65 ˆ 105

Rav Rg 1.14 ˆ 105

Rmax Rg 2.00 ˆ 105

vmax
1 c 2.03 ˆ 10´3

vmax
2 c 2.79 ˆ 10´3

↵1 1.07 ˆ 10´4

↵2 7.81 ˆ 10´5

� 1.54 ˆ 10´5

Table 1 List of parameters of the binary NS system analyzed
in Sec. 5.3.2.

In order to estimate the EC contributions to the GR
flux and waveform, we define (cf. Eqs. (129)–(133))

EF ptq ”
ˇ̌
ˇ̌FECptq
FGRptq

ˇ̌
ˇ̌ , (138a)

EH ptq ” |H GR
11 ptq| ´ |H EC

11 ptq|. (138b)

The above quantities, along with the function Rptq rep-
resenting the relative distance of the NSs, are shown in
Fig. 1. From the plot of EF , we see that the spin e↵ects
become more significant at the closest point of approach
between the objects, where the gravitational field be-
comes more intense. This agrees with the spirit of EC
theory, whose importance is expected to increase in the
strong-gravity regime. In our example, the average con-
tributions predicted by EC theory are smaller than GR
ones by a factor of 10´23. This di↵erence is consistent
with the fact that the bodies are widely separated dur-
ing their dynamical evolution. The EC corrections can
be also figured out starting from the trend of EH . As
shown in Fig. 1, it goes from its minimum to its max-
imum values when the NSs get closer. Moreover, this
function vanishes as soon as H11ptq “ 0 (cf. Eqs. (131)
and (138b)). These points indicate when GR and EC
e↵ects become comparable and in our example we have
|H GR

11 | “ |H EC
11 | „ 10´52. The same information, ex-

pressed in terms of ', can be inferred from the zeroes
of H11p'q, which occur at ' « 1

4⇡,
3
4⇡,

7
4⇡,

11
4 ⇡ (see

Fig. 2; the functional form of H11p'q can be promptly
deduced from Eqs. (131)–(133)).

Function
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The average EC  
contributions 
are smaller  

than GR ones 
by a factor 10−23

Rav



APPLICATION TO BINARY BH SYSTEMS
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CONCLUSIONS (1)

• The research activity  underlying this seminar aims at 
understanding possible quantum imprints in the propagation of 
GWs produced by spinning PN sources in EC theory, namely 
spinning, weakly self-gravitating, slowly moving, and weakly 
stressed sources. 

• We have seen how the GW generation  problem can be solved in 
the presence of torsion by extending the Blanchet-Damour 
approach to EC theory. 

• We have provided a concrete application by applying the 
Blanchet-Damour method to a binary NS system 
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CONCLUSIONS (2)

• The case of binary BH systems has also been considered. We 
have seen that EC corrections  imprinted in their gravitational-
wave signal can be potentially detected by means of the pulsar 
timing array technique. 

• Future work: analysis of the behavior of compact binaries in their 
later evolution phases (i.e., plunge, merger, ringdown) 
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CONCLUSIONS (3)
• Further details can be found in: 

• “First post-Newtonian generation of gravitational waves in Einstein-Cartan theory” 

     (Emmanuele Battista and Vittorio De Falco), Phys. Rev. D 104, 084067 (2021)


• “Gravitational waves at the first post-Newtonian order with the Weyssenhoff fluid in Einstein-
Cartan theory” (Emmanuele Battista and Vittorio De Falco), Eur. Phys. J. C 82, 628 (2022) 

• “First post-Newtonian N-body problem in Einstein-Cartan theory with the Weyssenhoff fluid: 
equations of motion” (Emmanuele Battista and Vittorio De Falco), Eur. Phys. J. C 82, 782 (2022)
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