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Many observable consequences
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(Static) Casimir effect: attractive force in vacuo
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Hawking emission from black holes
Source: Physics Stack Exchange
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(Dynamical) Casimir effect: light emission
from (non-intertially) moving mirror
Sketch from Nation et al., RMP 2012

Neutral medium in non-inertial motion
Quantum fluctuations scattered into real radiation
In return: feels quantum vacuum friction force



cartoon by G. Ruoso
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Take an optical cavity Mechanically
in the e.m. vacuum state shake it very fast

Beware when you open it again:
(a few) photons may burn you !!

vacuum
fluctuations

rrrrrrrrrrr RIS T The main experimental difficulty:
need to shake really fast to detect very few photons

Characteristic (Unruh) temperature k, T, ~ha/4 n’c
very small !!!

Sketch from Nation et al., RMP 2012
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Observation of the dynamical Casimir effect in a
superconducting circuit

C. M. Wilson', G. Johansson®, A. Pourkabirian', M. Simoen', I. R. Johansson®, T. Duty®, F. Nori®* & P. Delsing"
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Co-planar waveguide (CPW) for microwaves terminated on SQUID

Effective mirror position controlled via B-field threaded through SQUID, oscillates at €2
Modulation of B(t) allows to shake very fast with large amplitude — observable DCE

Observed as radiation along CPW: emission centered around €2/2 (with spurious modulation)
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ant rrelations in (analog) DCE emission
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Figures from: Wilson et al., Nature 479, 376 (2011)

Squeezing (%)

Emission centered around €2/2 (with spurious modulations)

Field correlations detected from field quadratures
as measured by linear amplifiers

Non-classical features observed, e.g. two-mode squeezing
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Analog DCE as no real mechanically moving element !!

NOTE: When waveguide closed by second mirror, hard to observe DCE:
* quickly above parametric threshold (Wilson et al., PRL 2010)
* classical emission loses quantum features
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* External microwave signal at Q drives string of Josephson elements
* Modulates effective refractive index of cavity material
* Similar experimental features as in previous experiment

Again, no mechanically moving element — analog DCE effect !




amical Casimir emission

A

Neutral dielectric medium in non-inertial motion
Emits radiation: quantum fluctuations scattered into real radiation
In return: feels quantum vacuum friction force

Simplest configuration:

* Half-space slab of refractive index n and mass M
* Mechanically oscillating at frequency

* Prediction for the dissipated energy within 1D scalar model:
o T dEu 1 *hQ
Mc’

Barton and Eberlein, Ann. Phys. 227, 222 (1993)

n—1

:2ﬂEm dt 6| n

> value 1s ridiculously small

> experimental observation by mechanical means with bulk objects appears hopeless,
but quantum optomechanics gives new hopes...



An opto-mechanical toy-model

Single-mode optical cavity a

Mirror mounted on mechanically moving part
with harmonic restoring force b

Opto-mechanical coupling via radiation pressure
on mirror or length-dependent shift of cavity resonance

A = hwyila + hh'h + o (@ +a")” (b+ ')

If o ~2m_, dynamical Casimir emission (with time-indep. H)
energy transferred from mechanical to optical field

Simple on paper, a bit harder in experiment:
* generally mechanical frequencies << optical frequencies

* appears feasible in p-waves with recent GHz acoustics experiments
(e.g. Schoelkopf’s group, Science 2017)

PHYSICAL REVIEW X 8, 011031 (2018)

Nonperturbative Dynamical Casimir Effect in Optomechanical Systems:
Vacoum Casimir-Rabi Splittings

Vincenzo I'u’[:am:ri,l{2 Alessandro l?!.iudn:-ll"a:},2 Omar i S[Efﬂnﬂ,z Anton Frisk Kﬂ(‘:kum,z Franco I\\Im‘if‘h1 and Salvatore Savasta'”



Eﬁn slmpler gptlgn,

B-field generated by LC circuit concatenated to SQUID
* LC circuit — mechanical oscillator
* DCE effect — coplanar waveguide

To enhance DCE & back-reaction effect:

close CPW with second mirror to create cavity
and resonantly enhance DCE

Back-reaction of DCE expected to be visible
as additional dissipation on LC circuit

To be electronically probed on the LC dynamics

Estimated single-quantum coupling ~10kHz,
not far from typical decay

S. Giulio Butera

S. G. Butera & IC, Mechanical back-reaction effect of the dynamical Casimir emission, Phys.Rev. A 99, 053815 (2019)



DCE results in broadened resonance by y, ., ~2 /7

Strong DCE coupling ®_> y gives nonlinear Rabi splitting of resonance

H — ﬁwnﬁ-'lﬁ | ﬁ.whﬂlﬁ - huw, (Elﬁ'z } E(&I)‘g)

Next steps:
* extend the calculation to open CPW where DCE i1s broadband and no resonant enhancement of DCE

* design optimal set-up and try the experiment
(Q@TN collab. A. Vinante, F. Mantegazzini, F. Ahrens, N. Crescini - Trento)

S. G. Butera & IC, Mechanical back-reaction effect of the dynamical Casimir emission, Phys.Rev. A 99, 053815 (2019).



Free evolution after initial kick of LC
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Weak DCE coupling
reinforced decay due to DCE emission
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Strong DCE couplin

periodic exchange of energy
[also in Macri et al., PRX 2018]

S. G. Butera & IC, Mechanical back-reaction effect of the dynamical Casimir emission, Phys.Rev. A 99, 053815 (2019).



Ouantum fluctuation effects

Numerical integration of Master Equation Slightly non-resonant

Resonant DCE DCE

6 6

» Temporal decay of the mechanical oscillations (@) ®)
by DCE friction A

* Quantum fluctuations (shading) much larger
In non-resonant case

Phase space interpretation: Resonant
e Resonant — fluctuations in DCE

damping force
* Non-resonant — fluctuations in DCE Slightly

frequency shift non-resonant

Fluctuations are experimentally accessible in circuit-QED by measuring quantum state of LC circuit

Physically: unexpected role of quantum fluctuations of the quantum friction force

S. G. Butera & IC, Quantum fluctuations of the friction force induced by the dynamical Casimir emission, EPL 128, 24002 (2020).



The BIG question: what is the long-term fate of a BH ?

e HR carries away energy, so BH horizon must
(slowly) shrink to conserve energy/mass

 What is left once BH has evaporated?

e [s there any remnant of what has fallen into the BH ?

Our approach:

DISAPPEARANCE

o T4

* Analog models “quantum simulate” QFT on curved space-time...

Let’s start from simplest configurations !

...but Einstein egs. (coupling of matter/energy to metric) not implemented

Still, any hint from higher order couplings of quantum fluctuations to macroscopic DOFs?
What can a quantum optician’s point of view teach on this physics?




First step: Hawking emission

Hawking radiation
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Sketch from Nation et al., RMP 2012

Proposed by Schiitzhold-Unruh, PRL 2005

Towards back-reaction and BH info paradox: Hawking emission from moving self-bound soliton
(Katayama, Fujii, Blencowe, PRD 2020, PRR 2022, etc.)
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Theoretical calculation of Hawking spectrum



Analog Hawking emission detected
via Balbinot-Fabbri moustache

0 ¢ XE, . = 45 -0 5 0 5 10 15 h
Theory: IC et al, NJP 2008 Expt: Steinhauer, Nat. Phys. 2016
© 1.0
o False vacuum decay
E i °° via bubble formation
> 1n ferromagnetic BEC
104 d -] fFes] I L0

Zenesini et al., arXiv 2305.05225 (Pitaevskii BEC Center + collaborators)

Quantum fluids of light
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Many more challenges: cosmological particle generation & inflation; superradiance from rotating BHs, BH quasi-normal modes,...




Conclusions

Superconducting circuit-QED devices very powerful platform to study
observable consequences of the zero-point fluctuations of quantum vacuum

Dynamical Casimir emission (DCE) from moving mirror experimentally established
* Emission detected + quantum correlations

Back-reaction of dynamical Casimir emission on mirror — Quantum friction
Circuit-QED allow for all-electromagnetic configuration
extra e.m. oscillator coupled to SQUID plays role of mirror

quantum state of “analog mirror” can be read out with circuit-QED techniques

Future developments: complex geometries, e.g. analog black holes

Analog Hawking emission from horizon

* Holy grail: evaporation of black hole under effect of back-reaction
Insight on information paradox??
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QUANTUM HYDRODYNAMICS

Acoustic Hawking radiation

A milestone for quantum hydrodynamics may have been reached, with experiments on a black hole-like event
horizon for sound waves providing strong evidence for a sonic analogue of Hawking radiation.

lacopo Carusotto and Roberto Balbinot

Nat. Phys., Aug.15h, 2016
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All-opti k-reaction eff

PHYSICAL REVIEW A 85, 023805 (2012)

Back-reaction effects of quantum vacuum in cavity quantum electrodynamics

L. Carusotto,"" S. De Liberato,? D. Gerace,® and C. Ciuti?

Coherently-driven 3-level emitter embedded in optical cavity

Drive laser on g <> e transition — Rabi oscillations at €, cavity periodically modulated

Generates DCE emission, strongest when €, resonant with cavity

Absorption of drive laser: Heg = 282, I111{T1'[.-:‘Ig Pas| -

Peaks in DCE give dip 1n absorption: stronger “friction” reduces absorption rate

eg cav

* Feasible with optical or u-wave (circuit-QED) techniques



°

ircuit-OED: mirror as an in ndent DoF

B-field generated by LC circuit concatenated to SQUID

e LC circuit — mechanical oscillator

* DCE effect — coplanar waveguide

To enhance DCE & back-reaction effect:

* close CPW with second mirror to create cavity
and resonantly enhance DCE

* Back-reaction of DCE expected to be visible
as additional dissipation on LC circuit

* To be electronically probed on the LC dynamics

* Estimated single-quantum coupling ~10kHz,
not far from typical decay
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Another useful configuration (to exploit 2™-hand samples):
* Two (a,b) cavities, connected by cross-Kerr Josephson element
* Send pw’s into (b) to modulate effective length of (a) v
* Watch DCE emission into (a), backreaction in (b) Sketch from Johnson et al, Nat. Phys. Z

S. G. Butera & IC, Mechanical back-reaction effect of the dynamical Casimir emission, Phys.Rev. A 99, 053815 (2019)
Further steps in collaboration with DartWars INFN project — P. Falferi, A. Vinante, C. Gatti
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