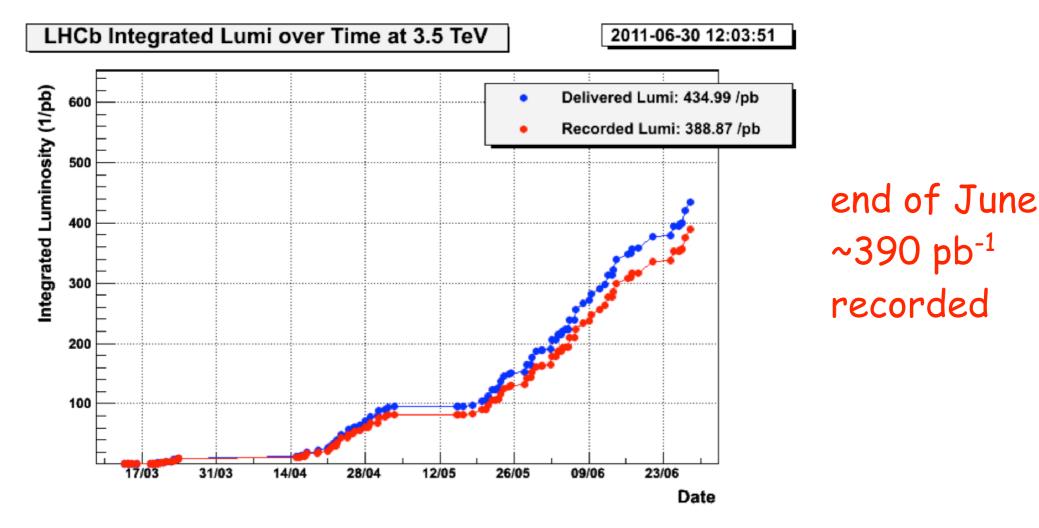


LHCb experiment at LHC (LNF group activities)

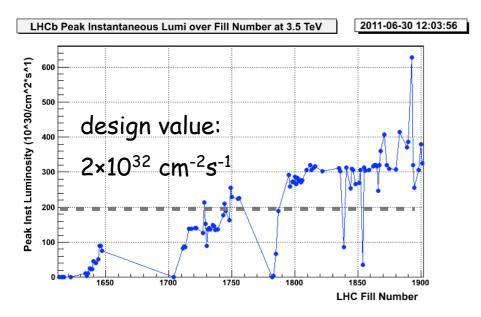

Matteo Palutan for the Frascati LHCb group

- news from LHCb
- data analysis at LNF
- LHCb upgrade and future activities

LNF meeting, July 6th 2011, Frascati

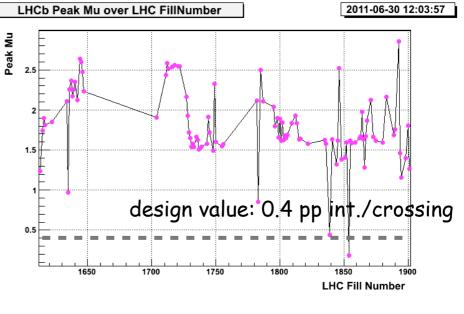
LHCb data taking 2011

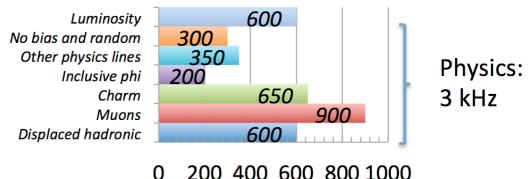
~90% data taking efficiency (data quality retains 99%)


We expect to integrate up to 2fb⁻¹ within 2012

LHCb data taking 2011

LHCb is taking data well above its design specifications!!

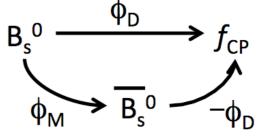

max luminosity


Luminosity and trigger strategy:

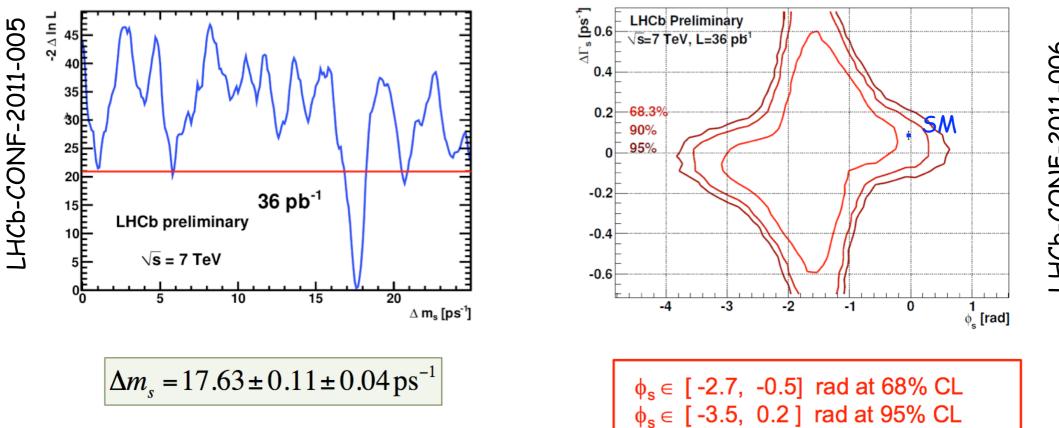
- keep Mu<2.5
- luminosity leveling at ~3×10³² cm⁻²s⁻¹

Mu = pp interaction/bunch crossing

HLT Output Rate (Hz)

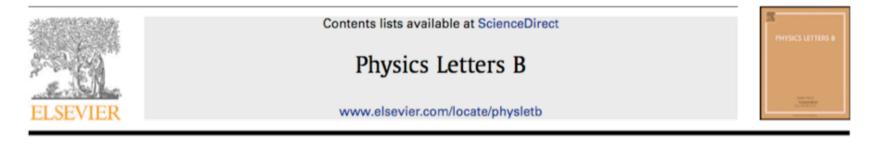

200 400 600 800 1000

Physics results on 2010 data (36 pb⁻¹)


LHCb

CP violation in B_s decays: φ_s

 φ_{s} = φ_{M} -2 φ_{D} =-0.0363±0.0017 in SM


New physics can modify mixing phase, and enhance φ_s

Physics results on 2010 data: $B_s \rightarrow \mu^+ \mu^-$

Physics Letters B 699 (2011) 330-340

Search for the rare decays $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^- \Rightarrow$

LHCb Collaboration

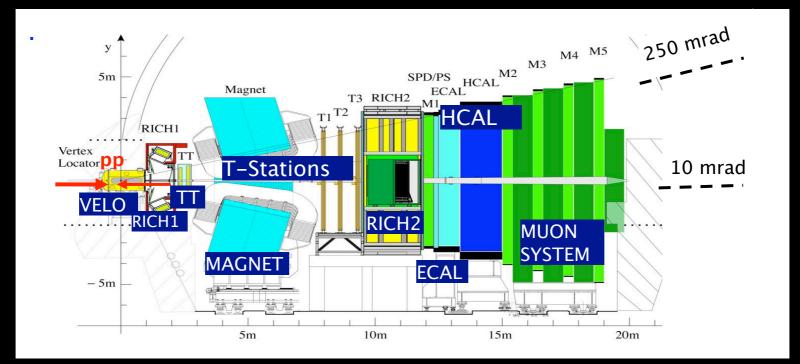
ARTICLE INFO

Article history: Received 13 March 2011 Received in revised form 12 April 2011 Accepted 13 April 2011 Available online 20 April 2011 Editor: W.-D. Schlatter

Keywords: LHC b-Hadron FCNC Rare decays Leptonic decays

ABSTRACT

A search for the decays $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ is performed with about 37 pb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV collected by the LHCb experiment at the Large Hadron Collider at CERN. The observed numbers of events are consistent with the background expectations. The resulting upper limits on the branching ratios are $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) < 5.6 \times 10^{-8}$ and $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 1.5 \times 10^{-8}$ at 95% confidence level.


© 2011 CERN. Published by Elsevier B.V. All rights reserved.

Main interest of the LNF group!

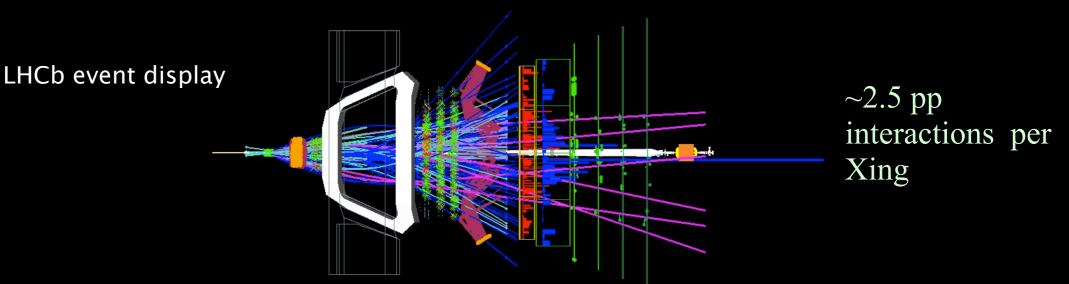
Search for $B_s \rightarrow \mu^+\mu^-$: motivations SM • Highly suppressed decay in the SM: BR=(3.2±0.2)×10⁻⁹ Z⁰ A.J.Buras, arXiv:1012.1447. W[±] *E.Gamiz et al. Phys.Rev.D* 80 (2009) 014503 M • Current best limit from CDF (3.7 fb⁻¹): BR<3.6×10⁻⁸ at 90% CL [CDF note 9892] <u>O. Buchmuller et al. Eur. Phys. J. C64 (2009)</u> • Sensitive probe to New Physics: tanß 0.9 e.g. branching ratio in MSSM enhanced by 50 0.8 sixth power of $tan\beta$ 2x10-8 0.7 40 1x10⁻⁸ 0.6 Best fit contours in MSSM 30 0.5 5x10⁻⁹ tan β vs M_A plane in 0.4 20 H⁰/A⁰ 0.3 the NUHM1 model $\tilde{\chi}_{M}^{\pm}$ 0.2 www SM-like 10 0.1 **Regions** compatible 800 900 1000 with different 400 500 600 700 S M_{A} [GeV/c²] ~ tan⁶B values of BR(B, $\rightarrow \mu\mu$)

$B_s \rightarrow \mu \mu$ at LHCb

□ Huge cross section: σ(pp→bbX) @ 7 TeV ~ 300 μb Large acceptance (bb are produced forward/backward): 1.9<η<4.9 → ε(acceptance×reco) for B_s→μμ~10% SM: 0.7 B_s→μμ events
□ Large boost: → average flight distance of B mesons ~ 1 cm → 12k B+→J/ψ(μμ)K+ with 0.037 fb⁻¹ CDF ~20k with 3.7 fb⁻¹

Key ingredients for $B_s \rightarrow \mu \mu$

1) Efficient trigger:


- to identify leptonic final states: efficiency $\sim 90\%$ (low p_T thresholds)

2) Background reduction:

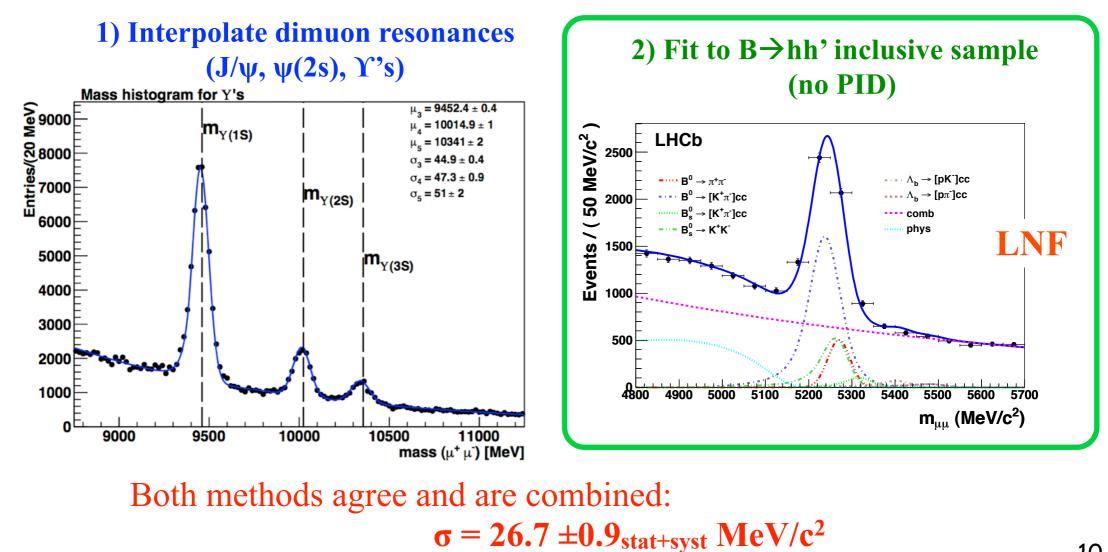
- Very good mass resolution : dp/p~ 0.35% \rightarrow 0.55% for p=(5-100) GeV/c
- Particle identification: $\varepsilon(\mu \rightarrow \mu) \sim 98\%$ for $\varepsilon(h \rightarrow \mu) < 1\%$ for p>10 GeV/c

3) Excellent vertex & IP resolution:

- to separate signals from background : $\sigma(IP) \sim 25~\mu m$ @ $p_T{=}2~GeV/c$

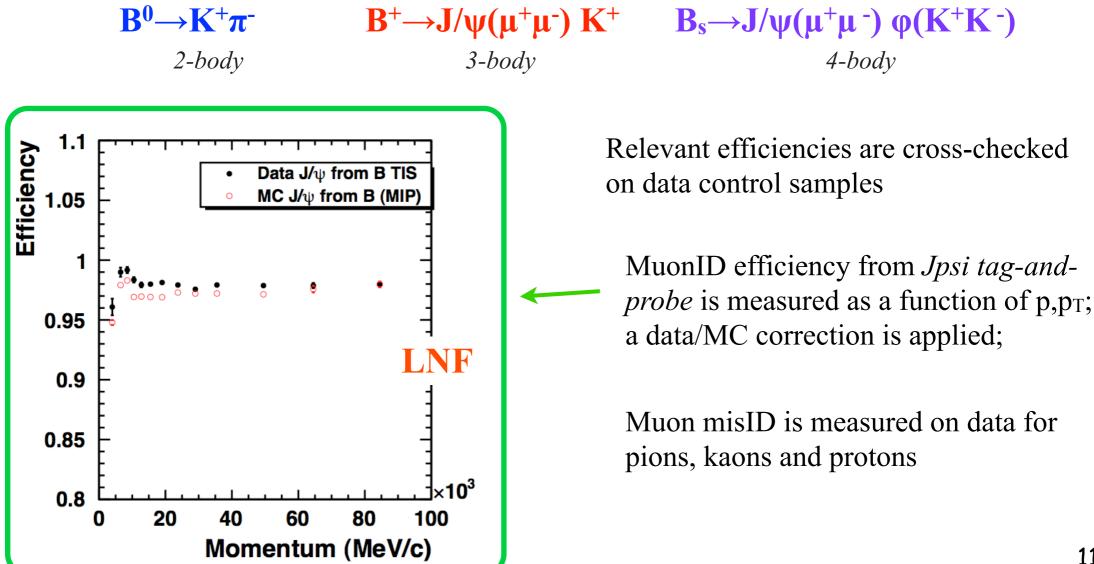
Background rejection

Our main background is combinatorial from two real muons


b) for background use the mass sidebands

peaking background negligible

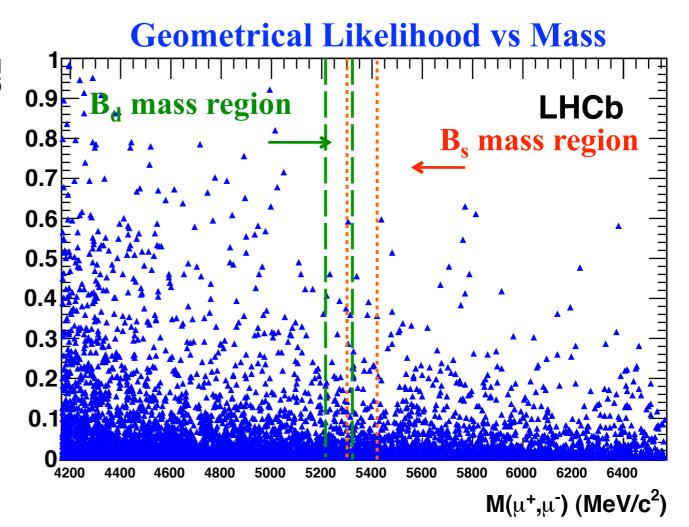
analysis is performed in 4 likelihood bins


Signal Invariant Mass calibration

The mass averages values are obtained from $B^0 \rightarrow K^+\pi^-$ and $B^0_s \rightarrow K^+K^-$ (with PID) The mass resolution is obtained from data via two methods:

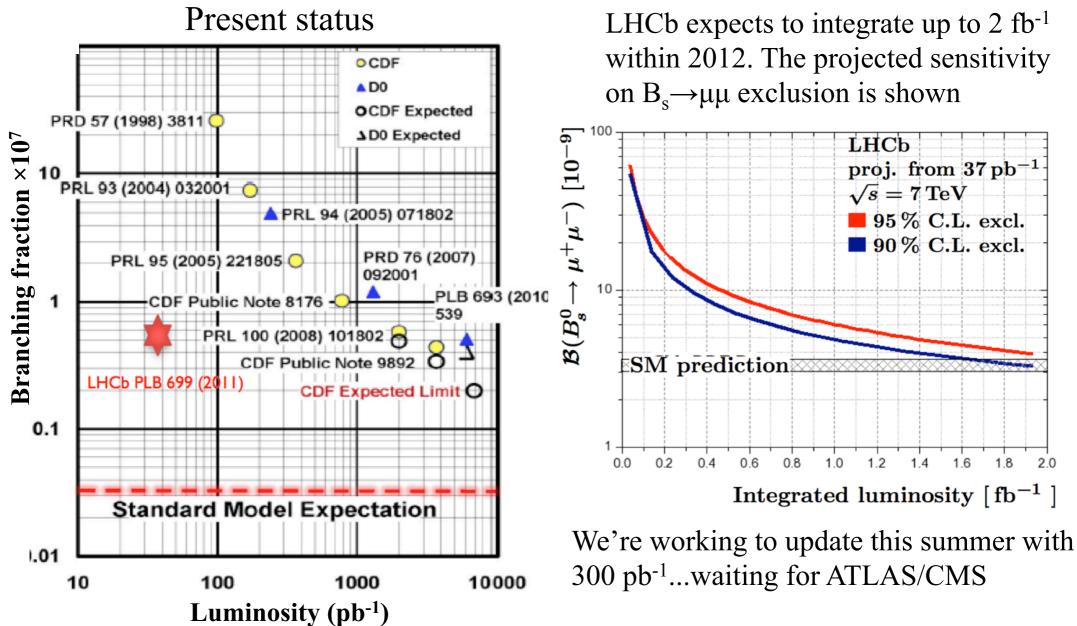
Normalization and efficiencies

The signal PDF can be translated into a number of expected signal events by normalizing to a channel with known BR; three independent channels used (with different systematics)


Upper limit on BR($B_s \rightarrow \mu^+ \mu^-$)

1) Count the events in 4 likelihood bins × 6 mass bins

2) For each bin compute the expected signal and background yields


3) Evaluate compatibility between observed and expected with

- S+B hypothesis : CL_{S+B}
- B only hypothesis: CL_B
- exclusion from $CL_S = CL_{S+B} / CL_B$

BR($B_s \rightarrow \mu\mu$) < 5.6×10-8 at 95% CL, with 37 pb⁻¹Phys. Lett. B 699 (2011)CDF BR($B_s \rightarrow \mu\mu$) < 4.3×10-8 at 95% CL, with 3.7 fb⁻¹Public note 9892 (2009)D0 BR($B_s \rightarrow \mu\mu$) < 5.1×10-8 at 95% CL, with 6.1 fb⁻¹Public note 9892 (2010)

Present results and future prospects

LNF analysis group 2011/2012

People: P. De Simone*, G. Lanfranchi*, M. Palutan, A. Sarti + new: B. Sciascia, F. Archilli (postdoc) and F. Soomro (postdoc)

*(Patrizia as Muon Detector Operation Coord.; Gaia as Bsmumu convener)

2011 results (direct involvement):

1) Jpsi production cross section
 "Measurement of J/psi production in pp collisions at sqrt(s)=7 TeV",
 <u>Eur.Phys.J.C71 (2011) 1645</u> (CERN-LHCb-ANA-2010-004/012)

2) $B_s \rightarrow \mu^+ \mu^-$ with $37 pb^{-1}$

"Search for the rare decays B^0_s -> \mu^+\mu^- and B^0 -> \mu^+\mu^-", <u>Physics Letters B 699 (2011) 330-340.</u> (CERN-LHCb-ANA-2011-007)

Present and future activities:

1) $B_{s} \rightarrow \mu^{+}\mu^{-}$ update with 300 pb⁻¹ (this summer?), than pass to the 1 fb⁻¹ sample 2) add new channels: interesting prospects for LFV study in $\tau \rightarrow \mu \mu \mu$ with 2011/12 data 3) Muon chamber effi monitoring, MuonID effi/bkg performances

Prospects for LHCb data taking and future upgrade

2011-2012 : 2 fb⁻¹ at 7 TeV ($\sigma_{bb} = 300 \ \mu b$) 2015-**2017** : 3 fb⁻¹ at 14 TeV ($\sigma_{bb} = 600 \ \mu b$)

LHCb upgrade for year 2019-2021 run (and beyond...)

Letter of Intent submitted to the LHCC in march:

- L > 10^{33} cm⁻²s⁻¹ \rightarrow > 5 fb⁻¹/year (today x 5)
- Doubling hadron trigger efficiency \rightarrow > 10 fb⁻¹/year (today x 10)

Sub-detectors are readout at 40 MHz (now is 1 MHz) and software trigger (PC farm), + new VELO (pixel) + new Inner Tracking (fibers)

2011-2013	R&D and TDR preparation
2014	Get approval for TDR and financial budget
2015-2018	Detector upgrade
2019	Start data taking

NB: super-LHC is not needed for the upgrade

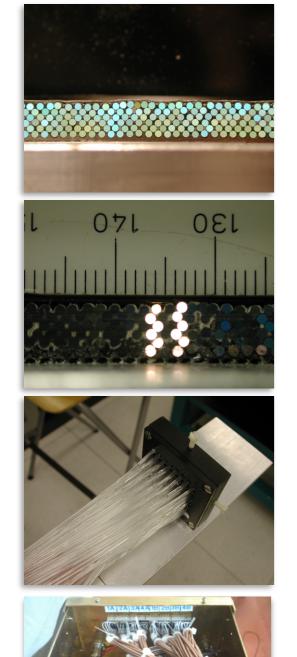
LHCC feedback (March-June meetings)

Physics Case:

The Committee congratulates LHCb for the excellent work done on the physics case for the upgrade. It finds the arguments for flavour physics with 50 fb⁻¹ very compelling. This amount of data allows measurements at the level of the theoretically achievable precision for many quantities sensitive to new physics. With 5 fb⁻¹ of collected data, most searches for deviations from the Standard Model (SM) predictions will be turned into precision measurements of the SM value with the LHCb upgrade. The level of accuracy achievable is comparable, in case of overlap, with that foreseen at future SuperB factories with 50 ab⁻¹; this makes the upgraded LHCb experiment a well-matched competitor and a very important complement.

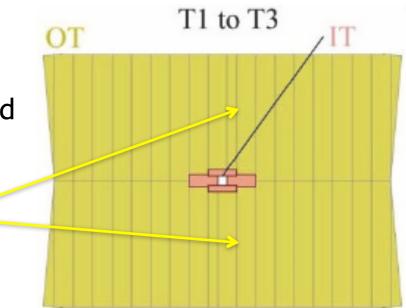
After the LHCb upgrade feasibility committee review:

LHCC referees find the result of the review very supportive of the upgrade strategy chosen and encourage the LHCb collaboration to proceed in the drafting of an upgrade TDR. The recommendations received point out very clearly all the areas which need special attention. The LHCC referees endorse them and expect appropriate answers in the upcoming TDR


Upgrade / consolidation activities in the Muon System

1) Electronics

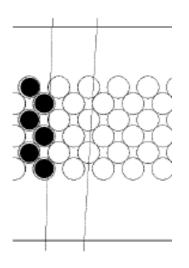
Define the architecture for 40 MHz readout, start testing FPGA, check in detail the feasibility of the proposed scheme


2) Chambers

- The long term resistance of Muon Chambers has to be yet understood (up to now no significant ageing, but high currents in some chambers which are cured by conditioning)
- Rate effects must be verified for inner regions (in principle no problems below 10³³ cm⁻² s⁻¹)
- M1 will be removed (p_T given by track finding in the farm)
- Chamber and electronics spare pools to be increased for the long term running (→ some areas, lack of chamber spares) most probably using the long shutdown 2013-14
- Better shield for backsplashes in M5 (to be studied)

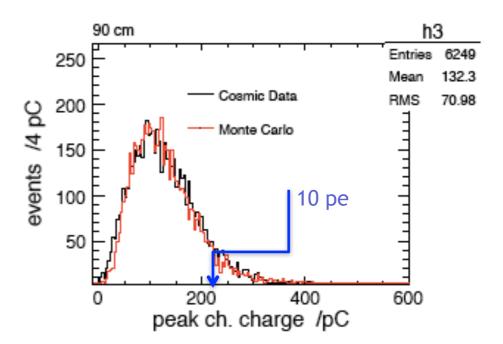
R&D on thick scintillating fibers (LNF)

A possible replacement of central OT modules exposed to radiation and high hits densities



Test setup:

2.3 m long module made of 6 layers of scintillating fibers (1mm thick) sent to a channel of MAPMT H8500


Signal amplifier + analog readout (64 channels ~ 64 mm)

External MDT tracker ($\sigma_x \sim 150 \ \mu m$)

Preliminary results

- Fiber spatial resolution ~290 μ m (\rightarrow 200 μ m with 0.7 mm fibers)
- P.E. number ~ 7 p.e. @1 m from the PM
- Threshold ~ ¹/₄ p.e. (noise 5%)
- Track efficiency ~ 93% (@ 2.3 m from PM)
 ~ 98% (@ 0.6 m)

B.D.Leverington, M.Anelli, P.Campana, R.Rosellini arXiV:1106.5649

Next steps:

- Test MAPMT R7600 (better QE, less cross-talk)
- Fibers with double cladding (to reduce X0)
- Squared fibers

- LNF/LHCb group contributed substantially to the construction of the MUON detector → huge effort from a very well motivated and highly experienced team of technicians, engineers and physicists
- Very active contribution to data taking and muon detector maintenance: run chief, muon piquet and data quality shifts attended
- Our goal now is giving a comparable contribution to data analysis! we're deeply involved in rare decays studies with muon in the final states

full integration with LHCb analysis WGs

- Italian groups (and LNF, too) are interested to a possible prosecution of LHCb beyond phase 1 (>2017): "italian" subdetector upgrade and maintenance
- Ongoing R&D on specific (and new) subdetectors: open opportunities, to be explored in the next future

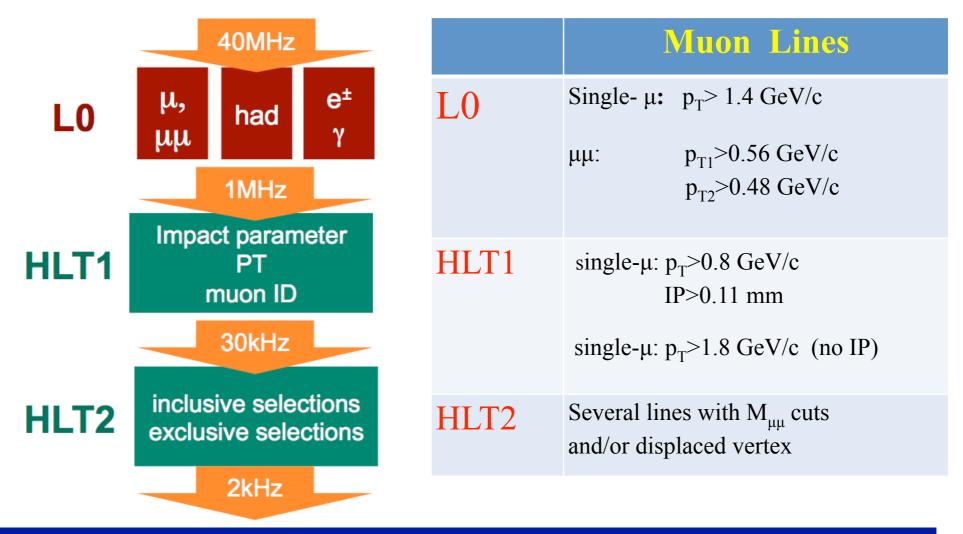
detailed schedule (budget/human resources) will be assessed during preparation of TDR

Il gruppo LHCb nel 2012

F.Archilli G.Bencivenni P.Campana P.DeSimone G.Lanfranchi F.Murtas M.Palutan A.Sarti B.Sciascia A.Sciubba	100 70 0 LHCb spokesman! 70 100 40 100 80 70 70
F. Soomro	100

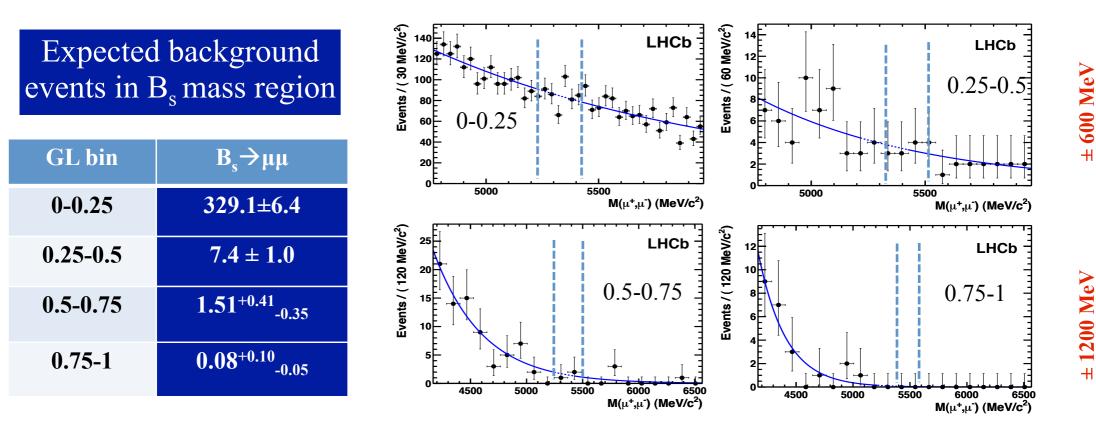
FTE 8,0

P.Ciambrone	20
G.Felici	20
M.Anelli	50
R.Rosellini	70
M.Santoni	20
A.Saputi	30
-	


SPCM 4 mesi uomo SELF 10 mesi uomo

Richieste economiche:					
ME	106				
MI	16				
Consumo	26				
Inventariabile	5				
Costr.Apparati	85				

Trigger for $B_{s,d} \rightarrow \mu \mu$



Half of the bandwidth (~1 kHz) given to the muon lines
p_T cuts on muon lines kept very low → ε(trigger B_{sd}→μμ) ~ 90%
Trigger rather stable during the whole period (despite L increased by ~10⁵)

Background expectation

The expected background events in signal regions are extracted from a fit of the mass sidebands divided in likelihood bins

Signal mass window: M(B_s)±60MeV; Sidebands: ±600 (1200) MeV

background is very low in the search window for high GL values

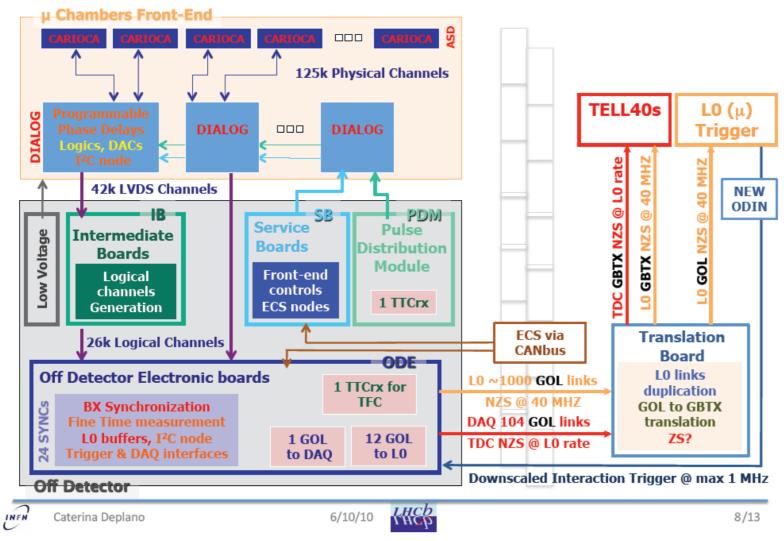
Sensitivities to key flavour channels

Туре	Observable	Current	LHCb	Upgrade	Theory
		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s \to \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s \to K^{*0} \bar{K^{*0}})$	-	0.07	0.02	< 0.02
	$S(B^0 o \phi K^0_S)$	0.17	0.15	0.03	0.02
B_s mixing	$2\beta_s \ (B_s \to J/\psi\phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s \to \phi \gamma)$	-	0.07	0.02	< 0.01
currents	$\mathcal{A}^{\Delta\Gamma_s}(B_s \to \phi \gamma)$	-	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	30%	8%	< 10%
penguin	$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)}$	-	-	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$eta \ (B^0 o J/\psi \ K^0)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	$2.5 imes 10^{-3}$	2×10^{-4}	4×10^{-5}	-
CPV	$A_{CP}^{dir}(KK) - A_{CP}^{dir}(\pi\pi)$	$4.3 imes 10^{-3}$	4×10^{-4}	8×10^{-5}	-

Lepton Flavour Violation: tau decays

$$\mathcal{B}_{r}(\tau \to \mu \mu \mu) \simeq 1 \times 10^{-7} \left(\frac{\tan \beta}{60}\right)^{6} \times \left(\frac{100 \,\text{GeV}}{m_{A}}\right)^{4}. \qquad \underbrace{\frac{\tau}{\tilde{\nu}}}_{H,A} \underbrace{\frac{\tau}{\tilde{\nu}}}_{\mu} \qquad \underbrace{\frac{\tau}{\tilde{\chi}}}_{H,A} \underbrace{\frac{\tau}{\tilde{\mu}}}_{\mu} \qquad \underbrace{\frac{\tau}{\tilde{\lambda}}}_{H,A} \underbrace{\frac{\tau}{\tilde{\mu}}}_{H$$

Taus at LHC are mostly (~60%) produced in prompt charm decays, and prompt charm production has been measured ~2 larger than expected ©


Very simplified MC studies in the past, using only ~40% of the produced taus, show that we can be competitive with Belle (BR<2.1x10⁻⁸ @90% C.L.) with ~2 fb⁻¹at 14 TeV CoM \rightarrow 2 fb⁻¹ at 7 TeV given the measured cross-sections. MC studies were limited by bkg statistics \rightarrow Move to real data!

First look at 2010 data looks very promising... selections optimized on MC, see zero events in 37 pb⁻¹ \rightarrow BR<2.6x10⁻⁷ @90% C.L.

Expect interesting results in $\tau \rightarrow \mu \mu \mu \mu$ decays with 2011/12 data.

Other tau decays under study: $\tau \rightarrow \mu \gamma$, $\tau \rightarrow \mu \Phi$, $\tau \rightarrow \mu \mu$, etc...

Minimal Upgrade First Idea

C. DePlano (CA) and the Cagliari-Frascati group

