

STT

status di BESIII e BEPCII

Le proposte della collaborazione italiana: fisica ISR & ZDD e misura della fase di decadimento della J/ψ

Le richieste per il 2012

Beijing Electron Positron Collider II

Design Features

- Beam energy: 1.0 2.3 GeV
- Crossing angle: 22 mrad (DAΦNE 50 mrad)
- Luminosity: 10³³ cm⁻²s⁻¹
- Optimum energy: 1.89 GeV
- Energy spread: 5.16 × 10⁻⁴
- Number of bunches: 93
- Bunch length: 1.5 cm
- Total current: 0.91 A

BESIII Collaboration: 46 institutions

Political Map of the World, June 1999

Il rivelatore BESIII

LNF CL 6-07-2011

BESIII

M. Bertani

BESIII @ BEPCII status

So far world largest data samples:

• ~226 Million J/ Ψ

SIII

- ~106 Million Ψ'
- ~2.9 fb⁻¹ Ψ(3770)
- 0.5 fb⁻¹ at 4010 MeV

to search for XYZ states and D_s physics, etc

Physics in the tau-charm region

- Light hadron physics
 - Spectroscopy: normal and exotic hadrons QCD
 - How quarks form hadron ? non-pQCD
 - Baryon e.m. form factors
- Charm physics
 - Full spectra CKM matrix elements \rightarrow SM and beyond
 - − $D\overline{D}$ mixing and CPV \rightarrow SM and beyond
- Charmonium physics
 - Spectroscopy and transition \rightarrow pQCD & non-pQCD
 - New states above open charm thresholds \rightarrow exotic hadrons?
 - pQCD: $\rho\pi$ puzzle \rightarrow a probe to **non-pQCD or**?
- Tau physics and QCD
 - Precision measurement of the tau mass and R measurement
- Search for rare and forbidden decays

Precision tests of SM and search for new physics

IFAE 2011, 28-04-2011

M. Bertani

arXiv: 0809.1869

BESIII publications

Light Quark states

- $a_0(980) f_0(980)$ mixing *PRD83*, 032003 (2011)
- **X(1860)** in J/ $\psi \rightarrow \gamma$ ppbar *CPC34*, 4 (2010)
- **X(1835,...)** in $J/\psi \rightarrow \gamma(\eta^{+}\pi^{-}) PRL106, 072002 (2011)$
- − η `→ $\eta\pi^+\pi^-$ mixing matrix elements *PRD83*, 012003 (2011)
- Charmonium spectroscopy
 - Properties of h_c PRL104,132002 (2010)

Charmonium decays

- ψ[`]→γπ⁰, γ η, γ η[`] *PRL105, 261801 (2010)*
- $\chi_{cJ} \rightarrow 4 \pi^0 PRD83, 012006 (2011)$
- χ_{cJ} → $\pi^0 \pi^0$, ηη *PRD81*, 052005 (2010)
- $\chi_{cJ} \rightarrow \gamma V(\rho, \omega, \phi)$ arXiv:1103.5564 Submitted to PRD
- χ_{cJ} \rightarrow ppbar K⁺K⁻- *arXiv*:11032661 Submitted to PRD

 $= J/\psi \rightarrow$ nnbar,ppbar - *Preliminary*

Open Charm and more to come...

• Members of LNF-PG-TO Italian groups:

M.Bertani, R. Baldini Ferroli, A. Calcaterra, A.Zallo,

S. Pacetti,

D. Alberto, M. Destefanis, M. Greco, M. Maggiora, S. Spataro

- <u>Main physics interests</u>:
 - e⁺e⁻→ $B\overline{B}$ (B=n,p, Λ) energy scan and ISR technique
 - High statistics cross section measurements
 - Threshold effects and time-like form factors extraction
 - R_{had} , exclusive cross sections (6 π , $\phi f_0(980)$,...), τ and charm...
- <u>Detector</u>: construction and installation (summer 2011) of a minicalorimeter (ZDD) in the forward region to detect ISR photons
- <u>Next</u>: construction and installation (summer 2012) of the second ZDD station in the backward region.

Initial State Radiation: physics motivations

◎Existing results, mainly from BABAR (ISR) show interesting and unexpected behaviors expecially at threshold for e⁺e⁻→ pp̄, e⁺e⁻→ AĀ
◎Only one measurement by FENICE (energy scan) for e⁺e⁻→ nn̄, now SND confirms FENICE

Physical limits in reaching threshold of many of these channels via energy scan (stable hadrons produced at rest cannot be detected)

The ISR technique provides a unique tool to access threshold regions working at higher resonances:

- all energies (q^2) at the same time \rightarrow better control on systematics
- detect ISR photon \rightarrow full X_{had} angular coverage

A Zero Degree radiative photon tagger will be installed at 3.5m from IP

- to detect ISR photons peaked at small angle
- to suppress background from π^{0} and γ_{FS}

BESIII e Zero Degree Detector

Tappe principali

- <u>Maggo 2011</u>: Modulo up dello ZDD testato con successo alla BTF di Frascati
- •Giugno 2011: Completamento e test con cosmici del modulo down
- •Giugno 2011: Completamento della struttura di supporto

•Luglio2011: Completamento e test dell'elettronica di acquisizione e lettura

•Agosto-settembre 2011: Spedizione a IHEP e installazione a BEPCII

•Ottobre 2011: Inizio presa dati e messa in opera dello ZDD su fascio

Bundles production (clear fibers): ZDD side

(SSE, resp. M.Anelli)

for each module: $6x(2x4x200)cm^3 + 4x(1x2x200)cm^3$ 8PM

Bundles production (clear fibers): PM side

BESIII

(SSE, resp. M.Anelli)

(may 16-22 2011)

One (out of two) ZDD module tested at BTF with 450, ~300, ~200 MeV e⁻ bunches (N_{e} =1,2,3) Final Pb-scifi ZDD module, bundles guides, PM's, TDC, at the moment not FADC but ADC caen V V792N

Small scintillator (60x11x4) mm³ used to trigger and select electrons impact point

Test beam @ LNF: preliminary results

luminosity BESIII can achieve the BABAR statistics

e⁺e⁻→ n雨

First preliminary result from SND (HADRON 11)

•BESIII has the unique possibility to measure this cross section with better precision and much wider energy range

BESII at BEPC [PLB591,42]: $BR(J/\psi \rightarrow p \bar{p}) = (2.26 \pm 0.01 \pm 0.14) \times 10^{-3}$

S <u>FENICE at ADONE</u> [PLB444,111]: **B***R*(**J**/ψ→*n* \bar{n})=(2.2±0.4)×10⁻³

 $B(J/\psi \to p \,\overline{p}) \sim B(J/\psi \to n \,\overline{n}) \implies \text{large } A^N_{3g} - A^N_{y} \text{ relative phase } ?$ LNF CL 6-7-2011 M. Bertani 24

PDG: Br($J/\psi \rightarrow nn$) = (2.2±0.4)x10⁻³

PDG: Br(J/ $\psi \rightarrow$ pp) = (2.17±0.07)x10⁻³

Br(J/ψ→ppbar) ~ Br(J/ψ→nnbar)

suggests a large phase (~90°) between strong and em amplitudes !

- No interference φ =90°, 180° (imaginary strong amplitude!)
- Maximum interference, $\phi = 0$, real strong amplitude

Composizione del gruppo LNF e richieste per il 2012

Ricercatori: TOT=4, FTE=3.8 → 2.0 con disposizione del 5/7/2011 !!!! R. Baldini Ferroli, M.Bertani (resp. loc. e naz.), A. Calcaterra (resp. ZDD), A. Zallo

Richieste ai LNF per 2012 per costruzione secondo modulo ZDD :

Supporto tecnico servizio esperimenti alte energie (supervisor M.Anelli): 0.5 F.T.E. Servizio progettazione: 1 mesi/uomo per progettazione supporti e movimentazione Servizio elettronica: : 2 mesi/uomo per circuiti FEE Meccanica: 1 mese/uomo per realizzazione support

Capitolo	Richieste (K€)
Missioni estere	56.0
Missioni interne	4.0
Consumo	5.0
Apparati tot	80
trasporti	5.0
Totale LNF	150.0

Magnet: 1 T Super conducting

BESIII Detector

BESIIII detector: all new !

CsI calorimeter Precision tracking Time-of-flight + dE/dx PID

The detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

BESITI BESITI

trigger finger scintillator ((60x11x4) mm³

Energy resolution, the ISR case

1

<i>C</i> ₁	4.3%	6.9 %
<i>C</i> ₂	4.6%	13.4 %

18

BESIII - 2010 Spring Coll. Meeting 🎆 June 6, 2018

ISR at BESIII

Front End Electronics (by G.Felici, LNF-SEA)

Front-End electronics

- Close to the detector (~2m away) a mechanical structure will hold:
 - 16 PMs (8 up, 8 dw) and fiber bundles
 - cables: analog OUT (16 x 3 = 48)
 - discriminators OUT (16), PM power IN (16)
- ~20 kgs of electronics

Observation of h_c(¹P₁)

IFAE 2011, 28-04-2011

M. Bertani

BESITI

The $h_c({}^1P_1)$ in ψ decays in BESIII

Combining the two results leads: B ($h_c \rightarrow \gamma \eta_c$)=(54.3 ± 6.7 ± 5.2) % (first measurement) M(h_c) = 3525.40 ± 0.13 ± 0.18 MeV/c² (consistent with CLEOc)

 $\Gamma(h_c) = 0.73 \pm 0.45 \pm 0.28 \text{ MeV/c}^2$ (first measurement)

ΔM_{hf}(1P) [MeV/c²]=0.10±0.13±0.18 *consistent with zero, no strong spin spin interaction* IFAE 2011, 28-04-2011 M. Bertani

X(1860): the anomalous enhancement at pp threshold CPC 34, 421 (2010)

- •Observed at BESII in $J/\psi \rightarrow \gamma p \overline{p}$ PRL91,022001(2003)
- •M = 1859 MeV/c^2
- Γ < 30 MeV/c² (90% CL)
- •JPC=0-+
- •Confirmed by CLEOc
- At BESIII $\psi' \rightarrow \pi^+ \pi J/\psi, J/\psi \rightarrow \gamma p \overline{p}$ [CPC 34,421 (2010)]
- •M=1861 ⁺⁶ ₋₁₃ ⁺⁷ ₋₂₆ MeV/c²
- •Γ < 38 MeV/c² (90% CL)
- •**Preliminary BESIII:**, $J/\psi \rightarrow \gamma p \overline{p}$
- •M=1861.6 ± 0.8 (stat) MeV/c²
- • $\Gamma < 8 \text{ MeV/c}^2 (90\% \text{ CL})$

ppbar bound state, baryonium ? M. Bertani multiquark ? glueball ? 36

Confirmation of X(1835), and new observation of X(2120), X(2370) in $J/\psi \rightarrow \gamma \eta \hat{\pi}^+ \pi^-$

[PRL 106, 072002 (2011)]

BESII result [PRL95, 262001 (2005)] •M = 1833.7 \pm 6.1(stat) \pm 2.7(syst) MeV/c² • Γ = 67.7 \pm 20.3(stat) \pm 7.7(syst) MeV/c² •Significance: ~7.7 σ

- **BESIII** *[PRL 106, 072002 (2011)]* confirms the existence of X(1835) with much higher statistical significance (> 20σ).
 - Two additional new resonances, X(2120)and X(2370), are observed with significance larger than 7.2 σ and 6.4 σ , – respectively.

a glueball ? LQCD predicts a 0⁺⁻ glueball at ~2.3GeV!

IFAE 2011, 28-04-2011