Presentazione delle attivita' che continuano e delle nuove attivita' proposte nel 2012 per la linea scientifica V @LNF

S. Dell'Agnello, INFN-LNF

Il 30-06-2011 si e' tenuta la "Settima Giornata di Gruppo V – LNF", dove sono state esposte in dettaglio gli esperimenti di GRV. Qui se ne presenta un "summary report"

Consiglio dei LNF, 07/07/2011: Attività di Gr. V

INFN

Attivita' di Gruppo V

7 R&D in Fisica degli Acceleratori

INF

Resp. Nazionale LNF

TERASPARC activity 2010-11

Coordinatore nazionale: <u>S. Lupi (Roma 1)</u>

Sezioni proponenti: Roma 1 (<u>S. Lupi</u>, O.Limaj), LNF (<u>P. Calvani</u>, M Boscolo, M. Castellano, M. Cestelli Guidi, <u>E. Chiadroni</u>, G. Di Pirro, M. Ferrario, D. Nicoletti, A. Nucara, L. Palumbo, R. Sorchetti, C. Vaccarezza) Milano (<u>A. R. Rossi</u>, V. Petrillo, L. Serafini) Roma 2 (<u>A. Cianchi</u>, B. Marchetti, L. Catani) Torino (B. Minetti, G. Ghigo, R. Gerbaldo, L. Gozzelino) Catania (A. Rovelli)

Activity 2011 Mounting of a Martin-Puplet interferometer

Martin-Puplet interferometer

Operating spectral range: 100 GHz-5 THz

 \circ It allows to reconstruct the beam profile

○ First test with pyroelectric detector; foreseen Golay cell or bolometers

Activity 2011

THz Interferogram through the MP interferometer

RMS bunch length measured after first dipole = 220 fs RMS bunch length retrieved from fitting the interferogram = 800 fs Single pulse: charge = 200 pC Energy = 112.7 MeV

Activity 2011: Four pulse COMB structure (200 pC)

Planning 2012: Mounting of a Pump-Probe THz apparatus @SPARC

2012 experimental planning

- 1) Building of a experimental apparatous for pump-probe THz measurements;
- Measurement (in collaboration with Roma III and CNR) of the lifetime of excited states in quantum wells (QW) finalized to the realization of a new kind of Quantum Cascade Laser built by Si-Ge instead of GaAlAs.
- 3) Characteriza/on of high-speed bolometer detectors in collaboration with the INFN section of Torino and Catania;
- 4) Measurement of the spectrum of the radiation in exotic conditions for the electronic beam;

2012 Funding request

Inventariabile: Componenti elettro-ottiche per pump-probe	60000 euro
Missioni nazionali:	5000 euro
Missioni internazionali:	6000 euro
Software	4000 euro
Consumo :	25000 euro

HCPAF : Resp. Bruno Spataro

Sezioni Acceleratrici Lineari ad Alta Frequenza

Bruno Spataro Dir.Tecnologo

Resp. Naz.

gruppo V 40%

Roberto Boni Dir.Tecnologo Alessandro Gallo Pr. Tecnologo Fabio Marcellini Tecnologo David Alesini Tecnologo Marco Esposito Luigi Palumbo Prof. Ordinario Mauro Migliorati R.U. con incarico di associazione Andrea Mostacci R.U. "'''' "

gruppo V 30% gruppo V 20% gruppo V 20% gruppo V 20% gruppo V 30% gruppo V 30% gruppo V 30% gruppo V 30%

FTE

2.2

Copper and Molybdenum prototypes for the breakdown studies

Photographs of the two X band cavities manufactured @ LNF

Cu brazed (the reference case)

V. A. Dolgashev, S. G. Tantawi, Y. Higashi and B. Spataro, "Study of basic RF breakdown in high gradient vacuum structures", LINAC10 Tsukuba, 2010

Molybdenum brazed

B. Spataro et al. "Technological issues and high gradient test results on X-band molybdenum accelerating structures" NIMA (2011) - <u>doi:10.1016/j.nima.2011.05.020</u>

COMEB S.r.I. Company (Rome)-I

...... <u>3-cell Copper – π mode - SW structure</u>

The reference case ...

The model was designed to concentrate the RF field in the mid-cell to achieve highgradient field, to investigate the discharge limits (V.A.Dolgaschev, SLAC)

The COPPER model has been tested to SLAC for power testing.

Results of high-power test of the 3-cell standing wave structure performed by ... "V.A. Dolgashev, SLAC" 30 October 2008

COMEB S.r.I. Company (Rome)-I

The Palladium-Copper-Silver (PALCUSIL) alloys were used with different composition (different melting points).

Comparison with copper structures of same aperture, 150 ns "shaped pulse"

X-band device realisation issue

Guidelines:

How to improve the high power performance (e.g. discharge rate) ?

- using materials with higher fusion temperature;
- avoiding the device heating at high temperature as done in conventional brazing

fabrication techniques

R&D on material

R&D on fabrication techniques

- Electroforming
- Soft Bonding
- Molybdenum sputtering on Copper

Sintered Molybdenum (Bulk)

Comparison of breakdown performance of three 1C-SW-A5.65-T4.6 structures, brazed (soft copper) KEK#2 and Frascati#2, 150 ns shaped pulse, and electroformed (hard copper) Frascati#1

experiment

V.A. Dolgashev, 2 November 2009

Hybrid Photoinjector (copper)

•B. Spataro et al." RF properties of a X-band hybrid photoinjector, [NIMA (2011), doi:10:106/j.nima.2011-04.057]

•J.B. Rosenzweig*, B. Spataro et al. "Design and Applications of an Xband Hybrid Photoinjector" NIMA_PROCEEDINGS-D-11-00025;

Costi per il 2012 in K€

МІ	ME	CON	LIC. SOF.	APP	TOTALE
6.0	16.0	61	12	/	95

MI: Attivita' con HTC (PG) ed HTC per brasature ed EBW (6Keuro)

ME: Tests di potenza a SLAC, UCLA, KEK per le strutture ad elevato gradiente e Cern e Karlsruhe per le misure sulle impedenze (12KEuro)

CON : costruzione della sezione ad onda stazionaria a 11.424 GHz (tre celle) con iridi di rame ed acciaio ed usando le standard procedure di brazing (8 Keuro)

Costruzione del fotoinettore aggiornato e relativo splitter (12 Keuro)

Prototipi per il processo relativo all'EBW (Electron beam welding) e relativo raffinamento dello stesso processo (rame e molibdeno) (8 Keuro);

Materiale per misure di resistivita'a RF dei film : calibration kit connettori V e Coppia cavi Vm-Vf da 25" (14 Keuro offertya :allegata)

Costruzione della triple choke cavity in molibdeno con l'EBW e acquisto del relativo materiale (13KEuro);

Completamento della costruzione della sezione ad onda stazionaria a 11.424 GHz (tre celle) realizzata con l'elettroplating e rivestita con il film di molibdeno per i tests ad alta potenza a SLAC (6 Keuro)

LIC. SOFT : codici di calcolo per simlazioni di wakefields e strutture a RF come Gdfield, HFSS etc e altre licenze per grafica (14 Keuro)

Laboratori Nazionali di Frascati June 30th 2011

ODRI @ FLASH Optical Diffraction Radiation Interference

Proposta per la realizzazione di un prototipo per la misura di emittanza con l'interferenza della radiazione di diffrazione ottica da utilizzare come diagnostica trasversa per fasci di elettroni di alta intensità e alta densità di carica. <u>Richiesta di estensione al III anno</u>.

Coordinatore nazionale: <u>A. Cianchi</u> (Roma 2)

Sezioni partecipanti:

LNF (M. Castellano 20%, E. Chiadroni 50%, G. Gatti 10%, L. Cacciotti 20%, R. Sorchetti 20%)

Roma Tor Vergata (A. Cianchi, L. Catani, S. Tazzari)

Collaborazione:

FLASH @ DESY Hamburg (K. Honkavaara, G. Kube)

Optical Diffraction Radiation angular distribution depends on beam transverse size and angular divergence and on the impact parameter within the slit

visibility of the interference fringes can be used to determine transverse size of a bunch of electrons crossing the slit:

 \rightarrow increasing σ_y both the peak intensity and the central minimum increase

visibility of the interference fringes is reduced by the beam angular divergence too, opening the way to a possible <u>single shot emittance measurement</u>

ODRI EXPERIMENT (a) Gr. V is the result of studies on diffraction radiation and activities started in the framework of CARE (RII3-CT-2003-506395, FP6)

M. Castellano, "A New Non Intercepting Beam size Diagnostics Using Diffraction Radiation from a Slit", NIM A 394, 275, (1997)
E. Chiadroni et al., Non-intercepting electron beam transverse diagnostics with optical diffraction radiation at the DESY FLASH facility, NIM B 266 (2008) 3789–3796
M. Castellano, E. Chiadroni, A. Cianchi, Phase Control Effects in Optical Diffraction Radiation from a Slit, NIM A 614, 163 - 168 (2010)
E. Chiadroni, M. Castellano, A. Cianchi, Diffraction as Ultra-High Intensity Electron Beams Non-Intercepting Diagnostics, Il Nuovo Cimento 32 C, N. 03-04 (2009)
A. Cianchi et al., submitted to PRST-AB
E. Chiadroni et al., submitted to NIM A

REQUIREMENTS FOR ODRI AS STANDARD DIAGNOSTICS

- We have demonstrated that DR-based diagnostics allows to measure high charge density beams without perturbing it
- It's now mandatory to allow the system to be used as standard diagnostics for high intensity, high density electron beams
 - ➢ New optical system (DESY)
 - ➢ Better shielding of the CCD (DESY)
 - Remote control of the relative position of both slits
 - ➤ User friendly data analysis
 - Collect information under different machine conditions and different beam sizes and shapes

ACHIEVEMENTS IN 2011

The beam time first scheduled for Autumn 2010, was delayed to January 2011:

- ➢ Higher energy 1.2 GeV
- ➤ Up to 30 bunches in the bunch train (up to 1nC per bunch)
- ➤ 10 Hz rep rate

One configuration was studied

Round beam (for linac driven FELs): two different sizes (50 μ m and 100 μ m)

> Better control of emittance in the bypass in order to know with good accuracy the beam angular divergence (to be compared with the retrieved one from ODRI angular distribution)

ACHIEVEMENTS IN 2011

HOR POLARIZATION

E. Chiadroni

PLANS FOR 2012

Supported by the great results obtained in only one shifts campaign, we asked

ONE MORE YEAR

➤ to measure ODRI angular distribution from beams with different aspect ratio (Flat beam typical for colliders), which means different angular divergences

- \succ to prove experimentally that the beam angular divergence in the plane normal to the slit can be distinguished and therefore isolated
- ➤ to perform a totally non intercepting quadrupole scan
 - ➤ to measure the normalize transverse emittance by means of ODRI angular distribution

Winter 2012 (January or February): One week of ODRI beam time is scheduled Summer 2012: the bypass line will be dismounted to allow the upgrade to FLASH2

The **ODRI diagnostics station will be mounted at FLASH2 on the main line** after the variable gap undulator.

In addition to the operation of ODRI as *standard* diagnostics, further experiments are foreseen to study the contribution and the effects of coherent emission due to microbunching within the electron beam.

E. Chiadroni

RICHIESTA FINANZIARIA @ LNF

Missioni internazionali

7500 euro/anno

<u>Consumo</u> (lavorazioni meccaniche, motorizzazioni e driver): 1000 euro/anno

Spedizione apparati

1500 euro/anno

Inventariabile

0 euro/anno

E. Chiadroni

BEATS2

BEAm line from Thomson Source 2 C. Vaccarezza on behalf of the BEATS2 group Anagrafica 2011 (2012 simile)

Ricercatori						
Nome	Contratto	Qualifica	Aff.	%		
1 Bacci Alberto Luigi	Dip. a tempo determinato	Tecnologo	CSN V	30		
2 Bellucci Stefano	Dip. a tempo indeterminato	Primo Ricercatore	CSN IV	10		
3 Coderoni Laura	Associato	Art. 2222	CSN V	20		
4 Ferrario Massimo	Dip. a tempo indeterminato	Primo Ricercatore	CSN V	10		
5 Levato Tadzio	Associato	Assegno di Ricerca	CSN V	20		
6 Micciulla Federico	Dip. a tempo determinato	Collaboratore	CSN V	10		
7 Migliorati Mauro	Associato	Ricercatore	CSN V	10		
8 Palumbo Luigi	Associato	Prof. Ordinario	CSN V	30		
9 Petrucci Andrea	Dip. a tempo determinato	Collaboratore	CSN V	30		
	9	FTE: 1.7				
Tecnologi						
		-				
Nome	Contratto	Qualifica	Aff.	%		
Nome 1 Clozza Alberto	Contratto Dip. a tempo indeterminato	Qualifica Primo Tecnologo	Aff. CSN V	%		
Nome	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato	Qualifica Primo Tecnologo Primo Tecnologo	Aff. CSN V CSN V	% 10 20		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo	Aff. CSN V CSN V CSN V	% 10 20 10		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro 4 Pace Elisabetta	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo Tecnologo	Aff. CSN V CSN V CSN V CSN III	% 10 20 10 20		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro 4 Pace Elisabetta 5 Rossi Andrea Renato	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo determinato Dip. a tempo determinato	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo Tecnologo Tecnologo	Aff. CSN V CSN V CSN V CSN III CSN V	% 10 20 10 20 30		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro 4 Pace Elisabetta 5 Rossi Andrea Renato 6 Sacco Immacolata	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo determinato Associato	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo Tecnologo Tecnologo Borsa Ente Pubblico	Aff. CSN V	% 10 20 10 20 30 10		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro 4 Pace Elisabetta 5 Rossi Andrea Renato 6 Sacco Immacolata 7 Vaccarezza Cristina	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo determinato Associato Dip. a tempo indeterminato	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo Tecnologo Tecnologo Borsa Ente Pubblico Primo Tecnologo	Aff. CSN V	% 10 20 10 20 30 30 50		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro 4 Pace Elisabetta 5 Rossi Andrea Renato 6 Sacco Immacolata 7 Vaccarezza Cristina	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo determinato Dip. a tempo determinato Dip. a tempo indeterminato Dip. a tempo indeterminato	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo Tecnologo Tecnologo Borsa Ente Pubblico Primo Tecnologo Numero Totale Tecnologi	Aff. CSN V	% 10 20 10 20 30 10 50 FTE: 1.5		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro 4 Pace Elisabetta 5 Rossi Andrea Renato 6 Sacco Immacolata 7 Vaccarezza Cristina	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo determinato Associato Dip. a tempo indeterminato	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo Tecnologo Tecnologo Borsa Ente Pubblico Primo Tecnologo Numero Totale Tecnologi	Aff. CSN V	% 10 20 10 20 30 50 FTE: 1.5		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro 4 Pace Elisabetta 5 Rossi Andrea Renato 6 Sacco Immacolata 7 Vaccarezza Cristina	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo determinato Associato Dip. a tempo indeterminato Tecnici	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo Tecnologo Tecnologo Borsa Ente Pubblico Primo Tecnologo Numero Totale Tecnologi	Aff. CSN V 7	% 10 20 10 20 30 10 50 FTE: 1.5		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro 4 Pace Elisabetta 5 Rossi Andrea Renato 6 Sacco Immacolata 7 Vaccarezza Cristina	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo determinato Associato Dip. a tempo indeterminato Tecnici Contratto	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo Tecnologo Tecnologo Borsa Ente Pubblico Primo Tecnologo Numero Totale Tecnologi Qualifica	Aff. CSN V Aff.	% 10 20 10 20 30 10 50 FTE: 1.5 %		
Nome 1 Clozza Alberto 2 Di Pirro Giampiero 3 Gallo Alessandro 4 Pace Elisabetta 5 Rossi Andrea Renato 6 Sacco Immacolata 7 Vaccarezza Cristina	Contratto Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo indeterminato Dip. a tempo determinato Associato Dip. a tempo indeterminato Tecnici Contratto Dip. a tempo indeterminato	Qualifica Primo Tecnologo Primo Tecnologo Primo Tecnologo Tecnologo Tecnologo Borsa Ente Pubblico Primo Tecnologo Numero Totale Tecnologi Qualifica Operatore tecnico	Aff. CSN V CSN V	% 10 20 10 20 30 10 50 FTE: 1.5		

Sezioni Partecipanti:Bari, Cagliari, Ferrara (coord. nazionale), Lab. Naz. di Frascati, Milano, Pisa, Roma I, Trieste

- Thomson Backscattering X-ray source per applicazioni radiografiche
- SPARC + FLAME=pacchetto di elettroni ad alta brillanza da SPARC + il fascio laser di FLAME con impulsi a 5 psec, 5 J, entrambi focalizzati a 15 µm rms

PlasmonX main features

2 Beamlines for intense laser/electrons/plasma interactions

 \blacktriangleright Laser/Plasma Acceleration of ultra-short (fs) e⁻ bunches

Compact Sources of mono-chromatic tunable X-rays

(20 KeV to 500 KeV) for advanced clinical diagnostic and nano-biology

Experiment	Bunch charge (nC)	Energy (MeV)	Bunch length rms (ps)	Norm. rms emittance (mm)	Energy Spread (%)	σ beam @ Interact (mm)
Plasmon	0.025	100-150	<u>0.025</u>	0.1	0.2	7-8
Thomson	<u>1-3</u>	<u>28-150</u>	3	2 - 5	0.2 - 0.1	10 - 30

Thomson & Plasma Acceleration beamlines

From January 2011:

- The facility layout has been optimized according to safety authorization requirement
- The layout has been checked for feasibility w/beam dynamics simulations, w/some longitudinal tunability for the Thomson Source IP
- The Field maps of magnetic elements are now available to refine beam tracking results
- ✓ The Dipole prototype has been tested at LNF and accepted
- ✓ The Steering Magnet prototype is under test at LNF
- ✓ Installation foreseen from July 10st-September 15th 2011

II anno: Esperimenti di radiografia monocromatica in assorbimento con fantocci tessuto equivalente e dosimetria all'energia di 20 keV. Esperimenti di radiografia in contrasto di fase con fantocci tessuto equivalente e dosimentria. Ottimizzazione parametri collisione per l'energia di 40 keV. Caratterizzazione fascio X a 40 keV. Caratterizzazione topografica fascio X a 40 keV Primi eperimenti di radiografia in assorbimento ed in contrasto di fase all'energia di 40 keV. Esperimenti di radiografia a doppia energia 20 - 40 keV e dosimetria. Ottimizzazione della collisione alle energe del k-edge dello iodio (33 keV). Esperimenti di radiografia differenziale a k-edge e dosimetria

РНОТОСАМ

Progettazione e realizzazione di **fotocatodi** innovativi basati su eterostrutture di **silicio-germanio**, con le seguenti caratteristiche:

- 1) Estrazione mediante emissione di campo foto-assistita da fotoni NIR
- 2) Generazione di fasci polarizzati in spin
- 3) Retroilluminazione
- 4) Effetto focheggiante della radiazione

PHOTOCAM

Realizzazioni 2011

Array di emettitori nanostrutturati per emissione di campo fotoassistita da fotoni NIR

PHOTOCAM

Realizzazioni 2011

Strutture per la retroilluminazione con focheggiamento geometrico e ottico

РНОТОСАМ

Realizzazioni 2011

Strutture MQW per sorgenti polarizzate in spin

Richieste finanziarie per il 2012

INFN sez. Roma TRE

Consumabile: substrati di silicio, gas per processi di crescite di eterostrutture, chimica per il trattamento dei campioni realizzati (13 $k \in$)

Missioni interne: (2 *k*€)

INFN - LNF

Consumabile: (5 *k*€)

γ-Ray Emitter from Self-Injected (Staged) Thomson Scattering v=RESIST

Coordinatore Nazionale: <u>Leonida A. Gizzi</u> Intense Laser Irradiation Laboratory* CNR-INO & INFN-PI

Coordinatore LNF: Giancarlo Gatti

Sezioni partecipanti: LNF, Pisa, Milano, Bologna

*http://ilil.ino.it

BACKGROUND: Laser Plasma Acceleration

*(S.P.D. Mangles et al., Nature, 431, 535 (2004); C.G.R. Geddes et al., Nature, 431, 538 (2004); J. Faure et al., Nature, 431,541(2004));

LASER INDUCED WAKEFIELDS

High power laser focused in gas, generates plasma waves able to accelerate/focus electrons. In a special regime, wavebreaking injects electrons in the accelerating ion bubble, then forming a bunch.

Properties: ultra-high gradient (>50 GeV/m) ultrashort bunch (≈fs), tens pC, high energy spread (few %) strong betatron oscillations, emittance growth rapidly out of the plasma, low reproducibility*

New Hot Topics

Schemes improving accelerating lengths(up to GeV level), laser guiding, energy spread control, injection control, matching through conventional linacs. Efforts aimed to applications (e.g. compact FEL, linear collider)

Self Injection Test Experiment @ LNF (Dec 2010)

200

Energy (MeV)

300

Succesful results:P<50 TW @ hundred MeV level on 4mm gas jet

Next tests at full power by the end of July 2011 after FLAME laser commisioning

Timely for new activity based on self-injection

Y-RESIST - Objectives Establish a program on plasma acceleration, self-injection based, in FLAME target area relying on the successful experimental campaign, to achieve:

- Injection control and staging for multi-GeV

- Demonstrate generation of tunable compact γ -ray source for nuclear resonance applications (100 keV- MeV) through all-optical Thomson Scattering interaction

(laser accelerated electrons interacting with laser head to head)

- Explore conditions for experimental confirmation of Landau-Lishfitz equation in radiation-dominated regime.

Expected photon flux: 10⁵ *ph/eV/sec (on fs scale length)* (1E5 higher than conventional Brehmmstralung sources) Possible scheme

First Year (2012) activities

- Develop injection (ionisation, optical, cold ...) current experimental set up
 - Compare targets (cell and pulsed gas-jet)
 - Test gas-mixtures for injection control;
- Design two- and three laser pulse experimental configuration (counter-propagating main + transverse)
 - Test custom multifocal parabola (small scale)
- TDR of γ -resist including tunable MeV γ -ray source
Sezioni ed FTE

PISA

M.P. Anania (A.R., 70%), G. Bussolino (T.I. CNR, 60%), G. Cristoforetti (T.I. CNR, 20%), L.A.Gizzi (T.I. CNR, 60%)

L. Labate (T.I. CNR, 70%), T. Levato (A.R. CNR, 80%), A. Macchi (T.I. CNR, 10%) - Totale 3,7 FTE

FRASCATI

S. Martellotti (100%), P. Antici (20%), M. Ferrario (20%), G. Gatti (30%), A. Ghigo (10%), N. Pathak (80%),

A. R. Rossi (20%), C. Vaccarezza (10%) - Totale 2,9 FTE

MILANO (V. Celoria)

V. Petrillo (20%) L. Serafini (20%)-Totale 0,4 FTE

BOLOGNA

P. Londrillo (% TBD), A. Sgattoni (% TBD), G. Turchetti

Esperimento !CHAOS

Resp. naz. e Roma-TV: Luciano Catani (Roma-TV)

Resp. LNF: Alessandro Stecchi (LNF)

L'esperimento **!CHAOS** dei LNF e della Sezione Roma-TV si propone di sviluppare e validare **un nuovo paradigma per i sistemi di controllo** (SdiC) e **di acquisizione** (DAQ) degli acceleratori di particelle.

Caratteristiche principali e obiettivi:

•definizione di una nuova topologia di SdiC che consenta la ridondanza di tutte le sue parti, l'assenza di point of failure, e l'hot insertion di nuovi HW

•integrazione di una modalità di funzionamento *Triggered DAQ* nel SdiC

•inserimento di un database orientato all'archiviazione dei dati di ogni dispositivo (*History Database*)

•inserimento di un sistema di distributed object caching per l'accesso real time ai dati (Live Database)

•astrazione dei componenti strutturali del controllo per ridurre la dipendenza dal particolare HW e dai moduli SW commerciali, permettendo quindi una estrema adattabilità

•intrinseca scalabiltà del sistema

•compatibilità con gli standard commerciali e con eventuali sviluppi di componenti custom

RICEVUTA DA CATANI proposta di ~10 pagine

Esperimento !CHAOS

L'attività si svilupperà in 2 anni di lavoro durante i quali verrà definita in dettaglio la struttura del SdiC, verranno selezionati i software per le componenti fondamentali e verificate le loro prestazioni.

Presso i gruppi dei Sistemi di Controllo di **DAFNE** e **SPARC** dei LNF, sono già in corso dei test sul campo di sotto-insiemi di **!CHAOS**, anche al fine di verificare la possibilità di riutilizzare il *software* sviluppato nel nuovo sistema.

Lo studio della componente *software* del SdiC porterà ad una necessaria rivisitazione della parte hardware in modo da realizzare i servizi basandosi sui nuovi standard per la modulistica I/O e per diverse tipologie di *controllers* (PC, μ P, FPGA, strumentazione *intelligente*, etc...).

Nel complesso, il lavoro dovrà consentire di validare questa soluzione rispetto ad una sua candidatura come SdiC di una infrastruttura delle dimensioni della **SuperB**.

Allo stesso tempo, l'intrinseca scalabilità del sistema consentirà di mettere a disposizione il SdiC anche per applicazioni di dimensioni ridotte, proponendo così una soluzione il cui utilizzo e sviluppo potrà essere condiviso da un'ampia comunità scientifica.

Esperimento !CHAOS - programma di lavoro 2012-13

Esperimento **!CHAOS** – piano di finanziamento 2012 - 13

Le richieste finanziarie riguardano la realizzazione di **due** ambienti di sviluppo per il SdiC **!CHAOS** nelle due sedi di LNF e Roma-TV e l'acquisizione di piattaforme e componenti per il test e lo sviluppo della parte hardware.

	2012 LNF	
Missioni int.	Annual SuperB meeting (x2), SuperB Computing W.shop	4.0 k€
Missioni est.	IPAC, PCaPAC, NIWeek (collaborazione con National Instruments)	11.0 k€
Consumo	4 schede di sviluppo ARM 500Mhz ARM9	1.6 k€
Inventario	1 N.A.T. Turn-key 19" µTCA system	12.0 k€
	1 processore blade	4.5 k€
	TOTALE	33.1 k€
	2012 Roma - TV	
Missioni int.	Miss. a LNF, Annual SuperB meeting (x2), SuperB Computing W.shop	4.0 k€
Missioni est.	IPAC, PCaPAC, XLDB, collaborazione SLAC	8.0 k€
Consumo	Cavi e accessori Ethernet + Infiniband	1.5 k€
Inventario	1 switch Infiniband + 1 switch Ethernet + (2+2) servers per i clusters	22.5 k€
	TOTALE	36.0 k€

	2013 LNF	
Missioni int.	Annual SuperB meeting (x2), SuperB Computing W.shop	4.0 k€
Missioni est.	IPAC, ICALEPCS, NIWeek (collaborazione con National Instruments)	11.0 k€
Consumo	Accessori per PXI	1.0 k€
Inventario	1 PXI-e system 9 slots with i7 Quad-Core and FPGA module Virtex-5	19.7 k€
	TOTALE	35.7 k€
	2013 Roma - TV	
Missioni int.	2013 Roma - TV Miss. a LNF, Annual SuperB meeting (x2), SuperB Computing W.shop	4.0 k€
Missioni int. Missioni est.	2013 Roma - TV Miss. a LNF, Annual SuperB meeting (x2), SuperB Computing W.shop IPAC, ICALEPCS, XLDB, collaborazione SLAC	4.0 k€ 8.0 k€
Missioni int. Missioni est. Consumo	2013 Roma - TV Miss. a LNF, Annual SuperB meeting (x2), SuperB Computing W.shop IPAC, ICALEPCS, XLDB, collaborazione SLAC Accessori per rack 19", altro	4.0 k€ 8.0 k€ 1.0 k€
Missioni int. Missioni est. Consumo Inventario	2013 Roma - TVMiss. a LNF, Annual SuperB meeting (x2), SuperB Computing W.shopIPAC, ICALEPCS, XLDB, collaborazione SLACAccessori per rack 19", altro1 Storage unit SAN 24 TB + (1+1) servers per i clusters + 2 server per i processiclient + 1 rack 19" compreso UPS e ventilazione	4.0 k€ 8.0 k€ 1.0 k€ 24.0 k€

Esperimento **!CHAOS** – risorse umane (LNF)

LNF	%
A. Stecchi (resp. locale LNF)	40 %
G. Mazzitelli	40 %
G. Di Pirro	25 %
L. Foggetta	20 %
S. Calabrò (tecnico)	50 %
P. Ciuffetti (tecnico)	20 %
TOTALE LNF	1.95 FTE

Oltre alle percentuali LNF dichiarate e a quelle di Roma-TV, si è creato un gruppo di lavoro che prevede la partecipazione di:

- Servizio Controlli della D.A. LNF
- Servizio di Calcolo LNF
- Gruppo di Padova (per il timing) (3 FTE: 3 tecnologi e 2 tecnici)

Inoltre, National Instrument Corporation

ha dimostrato un vivo interesse per quanto riguarda un'integrazione di **!CHAOS** nel proprio programma commerciale dedicato alla *Big Phy*sics.

Attivita' di GRV: risorsa inter-Divisione

Tel. + 39 06 9403 2373 + 39 06 9403 8036 Fax + 39 06 9403 2475 email: Simone.DellAgnello@Inf.infn.it

CAPITOLATO TECNICO

Lavori pubblici di manutenzione, revisione e ampliamento della Camera Pulita "ex-KLOE/ATLAS" situata all'interno del capannone Gran Sasso presso i LNF

INTRODUZIONE

La Camera Pulita ex-KLOE/ATLAS, la cui configurazione attuale è riportata in fig.1, necessita di lavori di manutenzione, revisione e ampliamento, come riportato nella fig. 2, per diventare una struttura polifunzionale e multi-utente di circa 270 mq.

Segue la descrizione della riconfigurazione della camera pulita esistente (circa 187 mq).

La zona 2 sarà un'area multi-utente, dedicata ad attività polifunzionali d'assemblaggio, allineamento e controlli di qualità ("quality assurance/quality control", QA/QC). Essa sarà realizzata in classe di pulizia 10.000 e dovrà avere un ingresso in comune realizzato sul lato della zona 1. La zona 3, realizzata in classe 10.000, sarà dedicata al progetto SuperB. La nuova configurazione prevede, inoltre, la realizzazione di due zone di classe mista 10.000/1.000 (zone 4,5) con ingresso dedicato all'esperimento KLOE2. Le zone 2, 3, 4 e 5 sopra descritte sono realizzate all'interno della struttura pre-esistente della Camera Pulita ex-KLOE/ATLAS.

Segue la descrizione dell'ampliamento (circa 83 mq, circa il 30% dei 270 mq totali).

L'ampliamento consiste nella creazione della zona 1 dedicata alle attività di ricerca spaziale che si svolgono presso l'apparato sperimentale SCF ("Satellite/lunar laser ranging Characterization Facility"). Essa avrà due ingressi separati, per i materiali e gli utenti, e sarà realizzata in classe di pulizia 10.000, secondo le richieste del progetto ASI-INFN "ETRUSCO-2" per la caratterizzazione dei retroriflettori della costellazione Europea di navigazione satellitare, GALILEO. Questa nuova zona comprenderà l'area aperta ora occupata dalla SCF e il locale esistente, adiacente a destra della SCF, chiuso ma non condizionato, dedicato in precedenza alla costruzione dell'esperimento LHCb.

Le altezze delle varie zone sono tutte di 3 m, esclusa la zona 1 che sarà di 4 m (altezza legata agli ingombri del criostato della SCF).

Per tutte le zone sopra citate si richiede la fornitura e la posa in opera di un numero adeguato di filtri assoluti H.E.P.A. per la diffusione dell'aria di mandata e di relativo sistema di griglie per la ripresa dell'aria.

In aggiunta si richiede la revisione completa dell'attuale Unità Trattamento Aria, del Sistema di regolazione elettronica di temperatura e umidità, e del Gruppo Frigorifero.

I.N.F.N. / L.N.F. - Via E. Fermi, 40 - I - 00044 Frascati (RM) - Italy

Claudio Cantone, TD art. 23, dedicato in gran parte a questi lavori inter-Divisione

Camera pulita al Capannone G. Sasso dei LNF: risorsa inter-Divisione

ETRUSCO-2 (ASI-INFN): 2.5 M€, 2010-2013

- New SCF-G, optimized for GNSS
- Two new GNSS retroreflector payloads

GRA-H, to be delivered to LNF on July 12, 2011

GRA, to be delivered to LNF in 2011

Attivita' di GR5: Camera Pulita INTER-DIVISIONE: "lessons learned"

- Per KLOE-2, SuperB, ET-2 (ASI-INFN), F.M., ma finanziata interamente dai LNF, cioe' DR, DT, DA
- L'unione delle Divisioni fa la forza
- Almeno 5% di lavori/forniture/servizi pubblici va in costi delle sicurezze (sicuro come la morte)
- 500M€ × 5% = 25M€
 - 25M€, in unita' art. 23, sono 500 anni (la durata dell'Impero Romano d'Occidente)
 - Per SuperB potremmo cercare di investirli in art. 23 INFN "formati" e dedicati in parte alle sicurezze

INFN

Attivita' di Gruppo V

2 R&D su Detectors, Elettronica e Software

NIO2BEAM 2012

LNL (Marco Cavenago) MIB (Giuseppe Gorini) LNF (Fabrizio Murtas)

NIO2BEAM (2009-2011) intende chiedere un anno di prolungamento (2012) per le seguenti circostanze:

- 1) L'attività sperimentale presso LNL è proseguita con successo.
- 2) Parte dell'élettronica del Fast Emittance Scanner è stata collaudata, ma ritardi
- Il progetto esecutivo della sorgente NIO1 completato nel maggio 2010 ha permesso di ottenere un finanziamento dalla Fondazione CRPR. Purtroppo abbiamo ricevuto preventivi con tempi e costi troppo onerosi. Si rende urgente contrattare riduzioni di fornitura e chiarimenti sulle specifiche con le varie industrie, e questa è la ragione principale della richiesta di prolungamento.
- 4) L'attività sulle GEM del gruppo MIB+LNF (attivata dal 2010) procede bene. Ci sono anche prospettive sull'uso di rivelatori boronizzati

Dunque se i punti 1 e forse 4 consiglierebbero il lancio di un nuovo esperimento, la circostanza 3 consiglia il prolungamento (utile anche per 2 e 4).

I REFEREE HANNO DATO PARERE PREVENTIVO FAVOREVOLE.

The SPIDER Facility Deuterium Beam (@RFX, near Padua)

The SPIDER beam is not a unique full beam but it is composed by smaller circular beamlets. The beam is subdivided into 16 groups of beamlets and each group is composed by 5 * 16 beamlets. The dimensions of one beamlet is 20 * 22 mm. The energy of the deuterium ions is 100 keV, which produce 2.4 MeV **neutrons**, detected by **n**GEMs

Frascati 30-June-2011

The SPIDER Facility Beam Dump

The SPIDER beam dump is composed by three layers: the two external layers are composed by CuCrZn alloy (99% Cu) and the central one contains water. The beam dump is inclined by 30 degrees with respect to the deuterium beam direction.

The Cathode n/p converter

CH₂ converts neutron into protons due to the high hydrogen relative rator Nazionali di Fisica Nucleare concentration (n-p reaction)

The Al layer thickness is optimized in order to stop all the protons that are not normally emitted \rightarrow When entering the gas, "good" protons have a residual energy of 1.42 MeV (from <u>fast</u> neutrons of 2.45 MeV in the <u>polyethylene</u> layer).

F.Murtas

First prototype: Readout

Read-Out Pads – Dimensions Distance between pads 0.1 mm

Read-Out Pads – CARIOCA Sectors Each Carioca reads a sector made by 16 pads 10 Cariocas used to read-out 10 sectors

Laboratori Nazionali di Frascati

Istituto Nazionale di Fisica Nucleare

Each beamlet is facing two pads

F.Murtas

16

Frascati 30-June-2011

52

52

L'attività di ricerca di NIO2BEAM, presso Milano Bicocca e LNF (GEMINI), ha portato a termine, nella prima parte 2011, due delle quattro richieste indicate nella proposta. Le ultime due verrano ultimate entro fine 2011.

- Test a breve utilizzando raggi x, raggi gamma e neutroni at ENEA-FNG Frascati (Luglio - Ottobre 2011)
- Avviato lavoro di progettazione del rivelatore di dimensioni finali (200 x 352 mm²) per RFX-Padova (Giugno 2011)

Proposta per 2012

bGEM: rivelatore a tripla GEM per neutroni <u>termici</u> con catodo <u>borato</u>

Il prototipo verrà costruito nella <mark>camera pulita di Frascati</mark> e successivamente testato a Milano.

Possibili applicazioni di un rivelatore di questo tipo sono il monitoraggio di fasci di neutroni termici molto intensi. Il rivelatore infatti può sostenere un rateo molto elevato (> 1 MHz/cm2) con efficienza di rivelazione prossima all'1%.

Necessità di sviluppare una elettronica innovativa specifica per GEM detector

Azioni previste per il 2012

- Progettazione e costruzione del prototipo tripla-GEM presso LNF e MIB
- Ottimizzazione con simulazioni catodo per la conversione dei neutroni termici
- Realizzazione nuova elettronica radhard a componenti discreti
- Collaudo con sorgente X e Cesio
- Test beam presso sorgente ISIS (UK)

Necessità finanziarie I NF: Materiale Consumo: 20 keuro PCB Detector pad di readout PCB Front End Electronics 3.5 keuro Componenti elettronici 2.0 keuro Metabolismo camera Pulita e Bombole Gas 5.0 keuro Costruzione apparati: Produzione 30 boards 3.0 keuro Materiale inventariabile Sistema di Sviluppo per processore ARM 2.0 keuro **Missioni interne:** 4.0 keuro Missioni estero: 6.0 keuro Totale richieste : 27.5 keuro F.Murtas Frascati 30-June-2011

NEutron Spectrometry in COmplex FleIds

Esperimento <u>TRIENNALE (2011-2013)</u> per lo sviluppo di tecniche sperimentali per la caratterizzazione di fasci neutronici pulsati ed ad alta intensità.

Roberto Bedogni (resp. LNF e nazionale) 80% B. Buonomo (30%), A. Esposito (50%), G. Mazzitelli (40%), L. Quintieri (20%) *M. Chiti, M. De Giorgi, A. Gentile* LNF

M.V. Introini (50%), A. Pola (50%) INFN-Milano e Dip. di Energia Politecnico di Milano

J.M. Gomez-Ros (80%) CIEMAT-Madrid, associato LNF

Istituto Nazionale di Fisica Nucleare

NESCOFI@BTF

Motivazione scientifica & obiettivi

Una caratteristica comune alle *facilities* che impiegano acceleratori di particelle nei campi della <u>ricerca, industriale e medico</u> è la produzione, intenzionale o non, di **campi neutronici** la cui **misura** è molto complessa a causa delle seguenti caratteristiche

- (1) Alte intensità
- (2) Intenso campo fotonico associato
- (3) Struttura temporale pulsata
- (4) Spettro energetico complesso dai termici (1E-8 MeV) alle decine o centinaia di MeV

In molte delle *facilities* citate si sta imponendo la necessità di caratterizzare tali campi mediante **sistemi attivi in linea** in grado di fornire indicazioni sullo spettro di fluenza (d ϕ /dE), sulle associate grandezze integrate (di campo o dosimetriche) e sulla loro variazione al variare delle modalità operative dell'acceleratore e delle procedure di irraggiamento.

Motivazione scientifica & obiettivi

(1) Fast neutron irradiation.

A TRIUMF, LANSCE, TSL (linea ANITA), ISIS operano linee di fascio neutronico per studi sui materiali e *chip irradiation* (industria elettronica, avionica, aerospaziale).

Gli spettri neutronici vengono solo simulati o misurati su ristretti intervalli energetici. Vi è un notevole interesse per misure di spettro in linea, anche per stimare le perturbazioni causate dagli oggetti irraggiati e per valutare l'importanza della radiazione dispersa dai materiali presenti nella hall.

(2) Campo medico: radioterapia convenzionale ed adronica

Le moderne tecniche radio-terapiche consentono una maggior attesa di vita per il paziente. In parallelo cresce l'interesse per i tumori secondari indotti dall'irraggiamento radioterapico. Si ritiene che gran parte di questo rischio possa essere associato al **campo neutronico** secondario, per l'elevato fattore di peso w_R dei neutroni soprattutto nel campo del MeV.

Sono state fatte campagne di caratterizzazione dei campi neutronici nella radioterapia ma non esiste uno strumento in linea in grado di fornire indicazioni sul campo neutronico presente in sala al variare della modalità di trattamento, energia, paziente. Potenziali utenti finali in ambito INFN: SPES, LNS, CNAO)

(3) Caratterizzazione campi neutronici in avionica o missioni nello spazio

NESCOFI@BTF

Proposta di uno spettrometro di nuova concezione (SP)² SPherical SPectrometer

Una sfera moderatrice (in polietilene) contenente un set di rivelatori (20-30) per neutroni termici (TND) disposti simmetricamente lungo i tre assi.

Per la simmetria sferica, può misurare correttamente la grandezza "fluenza" indipendentemente dalla distribuzione direzionale del campo.

La distribuzione energetica viene determinata dall' *unfolding* della risposta dei rivelatori posti a diverse posizioni radiali (codice FRUIT, sviluppato ai LNF-FISMEL).

La componente di alta energia (> 20 MeV) viene misurata dai rivelatori schermati dallo strato di piombo.

- **2011:** Studio della geometria mediante codici di calcolo MC (diametro, numero rivelatori, spessore di Pb e raggio di collocazione)
 - Realizzazione di un prototipo basato su rivelatori **PASSIVI** allo scopo di verificare la geometria e verificare l'accuratezza delle riposte simulate
 - Test del prototipo in campi monocromatici di riferimento (centri di taratura del PTB e del TSL) ed in campi realistici (n@BTF a Frascati)
- **2012:** Test di diversi tipi di **rivelatori attivi per neutroni termici** (ATND) allo scopo sostituire quelli passivi nella versione FINALE ed ATTIVA dello spettrometro (previsti irraggiamenti in campi di riferimento di neutroni termici)
 - Scelta del ATND ottimale e realizzazione della rete per l'acquisizione simultanea di tutti i rivelatori
- **2013:** Ingegnerizzazione, test e calibrazione dello spettrometro finale. Sua implementazione in n@BTF, realizzazione di accordi di ricerca per la sua diffusione in altri centri interessati.

piombo

TND

polietilene

NESCOFI@BTF

PRIMO ANNO (2011): obiettivi raggiunti fin ora

Istallazione di diagnostiche neutroniche e sistemi di allineamento sul fascio n@BTF per per la sua qualificazione come facility di test per NESCOFI@BTF.

2 tubi al BF₃ ed elettronica associata, sistemi di allineamento laser. L'arresto del LINAC di DA Φ NE ritarda all'autunno 2011 i tests previsti sul SP² prototipo passivo.

Nuovo spettrometro SP²: Studio ed ottimizzazione della geometria mediante codici Monte Carlo, realizzazione e test di un prototipo funzionante con rivelatori <u>passivi</u> (lamine ad attivazione)

Approccio a 2 steps:

NESCOFI@BTF

- Realizzato un primo prototipo in SOLO polietilene, di diametro 30 cm, 37 posizioni per rivelatori passivi su tre assi, risposta LIMITATA a 20 MeV e verificata sperimentalmente a 2.5 MeV e 14 MeV monocromatici (*Radiat. Meas. 2011, doi 10.1016/j.radmeas.2011.06.037*). Riposta validata entro ±3%.
- Studiato, simulato e realizzato il prototipo a range energetico esteso (da 1E-8 a 1E+3 MeV).

Effettuati i tests del prototipo passivo in fasci monocromatici di riferimento:

E<20 MeV (PTB Braunschweig) 20 MeV < E < 200 MeV (TSL Uppsala) (dati in corso di elaborazione)

Per le suddette campagne di calibrazione sono stati ottenuti DUE specifici co-finanziamenti EC nell'ambito del progetto ERINDA (FP7)

Da fare: test su fascio realistico n@BTF, non appena possibile.

Attività previste per il Secondo anno (2012)

S1. Acquisiti diversi rivelatori ATTIVI di neutroni termici (Active Thermal Neutron Detectors, ATND), **in quanto possibili "candidati**" per lo spettrometro finale, questi verranno testati in campi **rappresentativi in termini di energia**, **intensità e fondo gamma, delle facilities in uso presso gli utenti finali**:

- un campo di riferimento **di neutroni termici** (NPL- UK, unica facility termica di riferimento in Europa);
- n@BTF;
- un LINAC medicale già caratterizzato (progetto NEUTOR), energia degli elettroni 15-21 MeV;
- una facility medicale con adroni (LNS o CNAO)
- una facility da spallazione per chip irradiation (ANITA o ISIS)
- S2. Sulla base degli esiti del punto S1, scelta del ATND ottimale per la realizzazione del dispositivo attivo finale e acquisizione di un numero adeguato di esemplari per lo spettrometro sferico (SP²) e l'omologo cilindrico per fasci collimati (CYSP)
- S3. Costruzione spettrometri attivi
- S4. Acquisizione e caratterizzazione della catena elettronica per la **lettura simultanea** di tutti gli ATND

Richieste per il Secondo anno (2012)

Missioni interne Permanenze al lab di elettronica del Politecnico di Mi o ai LNF per messa a punto acquisizione e testing dei ATND (30 gg x 2 persone in 8 missioni) 2 campagne presso centri di radioterapia con elettroni e adroni (10 gg x 2 persone in 2	12 k€ dell'elettronica di missioni)
Missioni estere 1 campagna testing neutroni termici NPL-UK (10 gg x 3 persone) 1 campagna in una facility per fast neutron irradiation (10 gg x 3 persone)	10 k€
Trasporto strumentazione (DHL via aerea assicurato)	. 4 k€
Consumo Acquisizione circa 60 rivelatori n termici e relativa elettronica (preamplificatori e amplific	. 90 k€ atori)
Inventario Sistema digitale per filtraggio segnali e spettrometria	15 k€
Apparati Costruzione spettrometri finali (moderatori, filtri in Cd e Boro, degradatori in Pb)	20 k€
Spese servizi (beam time NPL e campo da fast neutron irradiation) . Costruzione spettrometri finali (moderatori, filtri in Cd e Boro, degradatori in Pb)	20 k€

NESCOFI@BTF

<u>TOTALE 171 k€</u>

Break....

7 R&D in Fisica Interdisciplinare

Attivita' di Gruppo V

AEINID2

Applicazioni Energetiche Interazione nanostrutture con Idrogeno e/o Deuterio, **Convenzione INFN-ENEL SpA**

Dr. Francesco CELANI (Responsabile INFN), Dip., Fisico, 100%
Dr. Sergio Bartalucci, Dip., Fisico (50%)
Prof. Antonio Spallone, PSMS-Associato, Fisico, 100%
Dr. Gianluigi Zangari, Contratt Univ.-Associato, Fisico e Matem. 50%
Dr. Emanuele F. Marano, Bors. INFN Laur. Magist. Sc. Materiali, 100%
Sig. Anna Nuvoli, Laur. INFN-LNF, Fisica, 100%
Prof. Enzo Righi, Ass., Medico Nucleare, 100%
Prof. Giorgio Trenta, Ass., Fisico e Medico Nucleare, 100%
Prof Luigi Satta, 100%
Sig. Bruno Ortenzi, Tecn. Mecc. 100%

Ospiti (afferenti ISCMNS):

Dr. Misa Nakamura, Chimica e metallurgista, 100% Dr. Enrico Purchi, PSMS, Fisico, 100%

ENEL-SpA

Dr. Enrico Paganini, Resp. Fisico, 100% Dr. Silvia Gasperetti, Chimica, 50% Dr. Bonelli Lucia, Fisica, 100% Dr. Silvia Masci, Chimica, 50% Sig. Angelo Bianchi, Tecn. Chimico, 100%

- 1) M a teriale consumo e riparazione strumenti: 50k€
- 2) M a teriale Inventariabile: 40k€
- 3) Visioni Interne: 10k€
- 4) M issioni Estere: 20k€

Totale 120k€

* Motivazione: utilizzo applicativo, dopo ulteriore approfondimento (R&D), delle complesse, e spesso non adeguatamente comprese, evidenze sperimentali di fenomeni anomali di tipo termico e/o "nucleare che si presentano, in specifiche condizioni sperimentali, durante l'interazioni di Idrogeno (e/o Deuterio) con specifici materiali puri e/o in opportune leghe: Palladio (Pd), Nichel (Ni), Titanio (Ti).

• A partire dagli studi pioneristici di Yoshiaki Arata (Univ. Osaka-Giappone, 2002), è risultato chiaro che i fenomeni anomali, precedentemente di scarsissima riproducibilità sperimentale, potevano essere resi "osservabili" quando il materiale attivo era in forma nanometrica (<<100nm).

- All'inizio il materiale utilizzato è stato Pd puro in forma sub-micrometrica e Deuterio gas.
- Successivamente Arata si è reso conto che il grosso problema della auto-aggregazione del Pd finemente suddiviso poteva essere superato disperdendo lo stesso in una matrice pseudo-vetrosa. Ha sviluppato una "pseudo-lega" Zr(65%)-Pd(35%) con complesse tecniche di melt spinning e quenching (100000-1000000 °C/s). Successivamente tale lega veniva ossidata a ZrO2-Pd.
- Con tale composto Arata ha dimostrato pubblicamente (2008) che avveniva la reazione

D+D→⁴He

Quindi, molto probabilmente, di origine nucleare.

Svantaggi della tecnica di Arata erano gli altissimi costi ed una resa energetica molto bassa (<0.5W/g), anche se per tempi abbastanza lunghi (ore).

* Il gruppo di ricerca dei LNF si è focalizzato nella tecnica di realizzare nano-depositi di materiali nanostrutturati su substrato filiforme attivo (Pd).

Sono stati ottenuti anche valori di eccessi termici di elevata densità di potenza (max: 5W assoluti, densità di potenza di 400W/g di Pd) ad elevata temperatura (500°C) in sistemi gassosi per moti giorni. Svantaggio della tecnica LNF era la intrinseca fragilità strutturale del substrato attivo di Pd.

- Comunque il know-how acquisito è stato di primaria importanza e ci ha permesso di ottenere risultati estremamente interessanti (1800W/g di Ni; 900°C), anche se di scarsa riproducibilità, quando abbiamo trasferito le metodologie acquisite al sistema Ni-H2.
- Primo obiettivo della collaborazione INFN-ENEL è capire i problemi della scarsa riproducibilità del sistema NiH che ha un effettivo valore aggiunto dal punto di vista applicativo.
- Sono in corso di sviluppo anche leghe binarie e ternarie a base di Ni. Verrà approfondito il fenomeno dello spill-over, di estrema importanza dal punto di vista della riduzione dei costi.

IOMA TRF

Materials Under EXtreme Condition (LNF & Sez. Firenze)

 MUEXC is the R&D of the 'PRESS-MAG-O' cryostat

DIPARTIMENTO DI FISICA

SAPIENZA UNIVERSITÀ DI ROMA

- 'PRESS-MAG-O' is a unique device designed to perform concurrent IR spectroscopy and a.c. magnetic susceptibility experiments with a control of the pressure, the magnetic field and the temperature
- Goal: <u>investigate (novel) materials</u> <u>under extreme conditions</u> such as superconductors, magnetic materials, etc. for technological applications of interest for the INFN

MUEXC status June 2011

PRESS-MAG-O cryostat

Tests and commissioning have been completed

- > We fix the cold leak in the PRESS-MAG-O cryostat with indium o-rings to connect the optical lines and the vertical ports of the split magnet with cryostat
- In the DG-Technology factory (Parma) all tanks of the PRESS-MAG-O cryostat have been closed and have been also soldered the superconducting magnet electrical connections, thermometers and Allen-Bradley resistances to control the He liquid level in the internal magnet tank.

Resistive carbon lines on diamond slabs have been realized and tests as a thermometer and a heating device have been performed

Collaboration Fi-INFN & Diamond material GmbH

status June 2011

Cooperations - Experimental activities

- 1 Phd (A. Puri) Universita' Sapienza Roma
- 2 foreigner students Universita' di Camerino (tesi)

The status of PRESS-MAG-O/MUEXC has been presented in an oral contribution to the 48th EHPRG International Conference held in Uppsala (Sweden) on July, 25-29 (2010).

Experiments IR spectroscopy vs. pressure/temperature (O. Rabeau - Univ. Zaragoza (MEC/INFN)

a.c. susceptibility experiments on diluted semiconductors (W. Ziyu - NSRL/USTC)

magnetic characterization of meteorites/titano-magnetites (PRIN – Univ. Parthenope – Naples)
Research teams

LNF (FTE 4.8)

D. Di Gioacchino (resp.)	100% LNF
A. Marcelli	30% LNF
A.Puri	100% LNF
N. Saini	100% RM1
M. Cestelli Guidi	50% LNF
G. Della Ventura	50% RM3
F. Bellatreccia	50% RM3

Sezione Firenze (FTE 1.8)

E. Pace 30% FI A. Desio 30% FI L. Gambicorti 60% FI A. Gherardi 30% FI M. Pancrazzi 30% FI M. Focardi 30% FI

Totale LNF + Sez. Firenze (FTE 6.6)

MUEXC Milestones concordate 2011

Caratterizzazione magnetica e ottica attraverso misure di suscettivita' a.c. e spettroscopia vibrazionale di campioni superconduttori magnetici e misure di magneto-ottica vs. p e B.

STATUS Giugno 2011

Lo stato dell'attivita' dopo l'incidente del Novembre 2010 durante il trasporto interno ai LNF dal magazzino centrale al laboratorio LAMPS e le relative discussioni con i periti assicurativi, hanno forzatamente bloccato la fase finale del Commissioning del criostato. Si stanno espletando gli ordini per le riparazioni e i test del magnete.

MUEXC Goals 31-12-2012

LNF

Abbiamo richiesto l'estensione di un anno per le necessarie riparazioni del criostato e il controllo del magnete superconduttore.

"Commissioning" finale dell'apparato con esperimenti magneto ottici vs. p con l'intero apparato.

TPS @LNF: 2011 activity

- TPS INFN experiment: realization of a Treatment Planning System for the hadrotherapy. LNF contribution mainly in the measurement of the fragmentation of terapeutical ¹²C beam (200-400 MeV/nucleon) at GSI, within the FIRST international collaboration.
- Data taking with 12C beam in summer. Request to GSI for He ,Li beams in late 2012/first 2013. Main LNF tasks:
- Realization of the TOF counter and of the Beam Monitor of the interaction region of the FIRST setup
- Development of the reconstruction code of the FIRST experiment
- Mechanical design of the Interaction Region

TPS @LNF: the group (2.5 FTE)

•De Lucia Erika	dipendente	20%	
 Paoloni Alessandro 	dipendente Ricercatore		10%
 Patera Vincenzo 	associato	Prof. Associato	50%
 Sarti Alessio 	associato	Ricercatore	30%
 Sciubba Adalberto 	associato	Prof. Ordinario	10%
 Mostacci Andrea 	associato	Ricercatore	40%
 Piersanti Luca 	associato	Dottorando	100%

•Technical support coordinated by M.Anelli, G.Corradi, P.Ciambrone, S.Cerioni

Run 2011: ¹²C @ 200-400 MeV/nucleon on carbon target

The FIRST experiment is designed to identify all the fragments (0<Z<6) and to measure their energy and direction.

Scintillator Start Counter: Trigger and TO for TPC and TOF wall

Beam Monitor: Beam direction and impact point on target

- Si pixel vertex detector: fragments emission angle
- TPC: Z/p, θ , ϕ after bending, dE/dX ~ (Z/ β)²
- Scintillator TOF wall: TOF= $f(Z,p,\theta,\phi)/\beta$
- Ptagger calorimeter:p(He) detection/discrimination through TOF and dE/dX

BEAM MONITOR

Rectangular Drift Cell (8 mm drift space)

Six staggered planes/view

The Beam Monitor has been optimized by means of test-beams at the BTF (electrons @ 500 MeV) and at LNS (protons, carbon ions @ 80 MeV/A).

Space resolutions better than 100 micron obtained on different beams and with different mixtures (Ar/Co_2 , P10).

START COUNTER

250 micron thick scintillator disc (5 cm diameter) Optical fibers for light transmission Fibers collected in 4 bundles

i-FCX "Fast Contrast X-ray Imaging" (2011-2013: 3 y.: 2+1)

The main aim is to design a prototype unit for new imaging technique on the base of polycapillary optics in order to study low contrast and fast developing processes in X-ray range of 5-30 keV

S.B. Dabagov (resp.), D. Hampai, G. Cappuccio, A. Esposito, A. Gorghinian

SPARC team // 4 FAI guests/year // 2 undergraduated students/year

Scientific Program (goals):

- to study on novel optical solutions for the improvement of image characteristics mainly from the point of view of the imaging procedure

- -- to develop new codes for both simulating and processing the x-ray imaging;
- to study on theory of x ray propagation for micro- and nano- x-ray imaging;

- to study optical transmission properties of nanostructures systems (nanochannel polycapillaries; porous materials; single-walled and multiple-walled nanotubes) for the purpose of their use for high contrast imaging.

@ X Lab Frascati: collaborations

- Prof. S.B. Dabagov (Resp.)
- Dr. D. Hampai
- Dr. G. Cappuccio
- Dr. V. Guglielmotti

Detectors

INFN - ENEA – CERN

X-ray Spectroscopy – X-ray Imaging

INFN – Diamond Light Source - ENEA –
University of Rome "Sapienza" - CNR –
University of Bicocca – University of
Florence – Inst of Applied Phys Problems,
Minsk - Lebedev Physical Institute,
Moscow

Novel Source – Nanoray (EU Project)

Labor, University of Rome "Sapienza" -University of Rome "Tor Vergata"

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

@ CO Evolution: "from micro- down to nano"								
Gei	neration	Kind of optics S	Sizes: length	& channe	el &	energy		
•	1 st	Assembled lens made of single co	apillaries	1 m	&	1 mm	&	≤ 10 keV
•	2 nd	Monolithic lens made of single c	apillaries	10-30 cm	&	0.1-1 mm	&	≤ 10 keV
•	3 rd	Assembled lens made of polycap	illaries	10 cm	&	10-50 μm	&	<i>≤ 20 keV</i>
•	4 th	Monolihic lens made of polycapi	llaries	4-10 cm	&	1-10 µm	&	≤ 50 keV
•	5 th	Monolithic integral micro lens		1-3 cm	&	0.3-1 μm	&	≤ 100 keV

Micro-capillaries

Nano →γ-rays (?)

Nanotubes & Nanochannels

@ advantages of micro-sources

There is a capability of compressing the electron flux to (1-3) micron at less power.

In case of reflection anode, the power of (40-50) watt can be focused to a (10-15) micron focal spot.

In this instance, anode would be at a 1 mm distance from the window.

NanoRay EU project:

http://prod-

euronews.euronews.net/2011/05/09 /low-cost-portable-x-ray-machinehits-market/

S. Dabagov

@ experimental layout: polycapillary + medipix

iFCX : richieste finanziarie 2012

Consumo :	
Tubo per raggi X al Cr completo di cuffia e alimentatore HV	8.00
Ottiche per raggi X	12.00
Pellicole per raggi X	1.00
Inventariabile :	
micos positioner	13.00
Costruzione apparati :	
Cabinet schermato per raggi X con tavolo ottico	25.00
Trasporto per le ottiche:	1.00
M.Estero : collaborazione & conferences	10.00
M.Interne : riunioni di collaborazione	3.00
Total	73.00

MoonLIGHT-ILN:

S. Dell'Agnello for the MoonLIGHT Team

Italian National Institute for Nuclear Physics, Laboratori Nazionali di Frascati (INFN-LNF),

Via Enrico Fermi 40, Frascati (Rome), 00044, Italy

7th Meeting of INFN-LNF National Scientific Committee V (CSN5) Frasacati, INFN-LNF, June 30, 2011

MoonLIGHT: single, large, distributed reflectors

Lunar Laser Ranging: Precision Tests of General Relativity

Improvement in LLR efficiency and precision can only come from single large retroreflectors.

Number of laser returns to make a normal point:

- MoonLIGHT single/large reflector: ~ 1
- Apollo/Lunokhod multi-reflector array: few thousands

Science measurement	Time scale	Reflector arrays Apollo/Lunokhod few cm accuracy	Single Reflectors MoonLIGHT 1 mm 0.1 mm		
Parameterized Post-Newtonian (PPN) β	Few years	β-1 <1.1×10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	
Weak Equivalence Principle (WEP)	Few years	∆ <i>a/a</i> <1.4×10 ⁻¹³	10 ⁻¹⁴	10 ⁻¹⁵	
Strong Equivalence Principle (SEP)	Few years	η <4.4×10⁻⁴	3×10 ⁻⁵	3×10 ⁻⁶	
Time Variation of the Gravitational Constant	~5 years	Ġ/G <9×10⁻¹³yr⁻¹	5×10 ⁻¹⁴	5×10 ⁻¹⁵	
Inverse Square Law (ISL)	~10 years	α <3×10 ⁻¹¹	10 ⁻¹²	10 ⁻¹³	

R. March, G. Bellettini, R. Tauraso, S. Dell'Agnello

PHYSICAL REVIEW D 83, 104008 (2011)

Constraining spacetime torsion with the Moon and Mercury

We report a search for new gravitational physics phenomena based on Riemann-Cartan theory of general relativity including spacetime torsion. Starting from the parametrized torsion framework of Mao, Tegmark, Guth, and Cabi, we analyze the motion of test bodies in the presence of torsion, and, in particular, we compute the corrections to the perihelion advance and to the orbital geodetic precession of a satellite. We consider the motion of a test body in a spherically symmetric field, and the motion of a satellite in the gravitational field of the Sun and the Earth. We describe the torsion field by means of three parameters, and we make use of the autoparallel trajectories, which in general differ from geodesics when torsion is present. We derive the specific approximate expression of the corresponding system of ordinary differential equations, which are then solved with methods of celestial mechanics. We calculate the secular variations of the longitudes of the node and of the pericenter of the satellite. The computed secular variations show how the corrections to the perihelion advance and to the orbital de Sitter effect depend on the torsion parameters. All computations are performed under the assumptions of weak field and slow motion. To test our predictions, we use the measurements of the Moon's geodetic precession from lunar laser ranging data, and the measurements of Mercury's perihelion advance from planetary radar ranging data. These measurements are then used to constrain suitable linear combinations of the torsion parameters.

Extension of work by Y. Mao, M. Tegmark, A. H. Guth and S. Cabi, PRD 76, 1550 (2007)

Science and launch opportunities

FP7-SPACE-2012, will be issued on July 15, 2011

JAXA (Japan): Selene-2

ISRO (India): Chandrayaan-2

Google X-Prize

NASA: ILN Lunar Geophysical Network is among the priorities in the next 10 years of activity of the Planetary Science Division

4551 Forbes Avenue, Suite 300 Pittsburgh, PA 15213 412-682-3282 www.astrobotictech.com

April 6, 2011

Dr. Simone Dell'Agnello Laboratori Nazionali di Frascati (LNF) dell'INFN Istituto Nazionale di Fisica Nucleare (INFN) Via E. Fermi, 40, Frascati (Rome) I-00044, Italy

Dear Dr. Dell'Agnello

As President of Astrobotic team participating in the Google Lunar X Prize call for a mission to the lunar surface (www.googlelunarxprize.org and www.astrobotic.net) I am writing to formally ask for the participation of your research group in the effort of building, testing and delivering a solid state retroreflector payload for our lunar surface mission foreseen to be launched as early as December 2013.

We intend to deploy the Lunar Laser Ranging Retroreflector for the 21st Century payload that has been developed in recent years by Professor Doug Currie of the University of Maryland at College Park (as instrument PI) and by your group at INFN-LNF (Acta Astronautica 68 (2011) 667–680). We have also been informed by your recent paper Adv. in Space Res. 47 (2011) 822-842 that at INFN-LNF you are operating a unique "Satellite/lunar laser ranging Characterization Facility (SCF)," which offers unprecedented capabilities for pre-launch qualification of payloads for laser ranging, which would be extremely important for the preparation of our mission.

I therefore ask you to consider participation in this effort, in the forms appropriate to the relevant Italian institutions and agencies that your research group is part of or is related to, under the coordination of Doug Currie. Please let me know at your earliest convenience your response.

Sincerely,

David Gump President

cc to:

Dr. Umberto Dosselli, Director of Laboratori Nazionali di Frascati dell'INFN Umberto.Dosselli@Inf.infn.it

Dr. Giacomo Cuttone President of the Commissione Scientifica Nazionale V dell'INFN Cuttone@Ins.infn.it Professor Douglas Currie University of Maryland currie@umd.edu Lunar Google X-Prize: request of collaboration from Astrobotic

Group (~15 FTE), Collaborations, SCF Group Memberships

S. Dell'Agnello, Resp.

- G. Delle Monache, Vice
- R. Vittori
- G. Bianco
- N. Intaglietta
- C. Cantone
- M. Garattini
- A. Boni
- C. Lops
- M. Maiello
- M. Martini
- S. Berardi
- G. Patrizi
- G. Bellettini
- R. Tauraso
- R. March
- M. Tibuzzi
- C. Graziosi
- A. Stecchi

National Collaborations

ASI - Centro di Geodesia Spaziale - G. Bianco, SLR/LLR station and orbit sw, Co-PI of ETRUSCO-2 AMI - Aeronautica Militare Italiana - R. Vittori, Co-PI of ETRUSCO-2

International Collaborations

Univ. of Maryland at College Park - D. Currie, inventor of LLR Univ. of California at San Diego - T. Murphy, best LLR Station MIT and Harvard-Smithsonian Center for Astrophysics - J. Battat, PEP lunar orbit sw

Membership of International Scientific Communities

ILRS - Member of Signal Processing WG

ILN - Member of Core Instrument WG

Requests to GR5 & to LNF

Servizi (m.u.; including the ASI-INFN project ETRUSCO-2):

SPCM (12) SEA (12) SSE (2) Laser (2) Criogenia (2)

Space Weather

(LNF, Napoli, Perugia, Roma 2 Tor Vergata) Una linea di ricerca multidisciplinare nello Spazio

Il Programma Sperimentale

ALTEA

SI-Rad/ALTCRISS

 CSES (Chinese Seismo-Electromagnetic Satellite), oggetto di accordo tra Chinese Earthquake Administration e INFN

- Studi degli effetti delle permanenze nello Spazio sul Sistema Nervoso Centrale

-Comprensione dei cosiddetti "light flashes" osservati da astronauti per la prima volta nelle missioni Apollo

- Studi di radiation shielding sulla ISS

ALTEA – ISS Facility

EEG 128 - 16314 Hz

32 channels per channel

Three independent **Push-buttons**

PushB.

SDS 6 SDUs

SDU – Silicon Detector Unit: 3 silicon planes with double detectors, view X & Y Area: 2 x (8 x 8) cm² Maximum error of angular reconstruction: ±1.8° Geometric factor: 160 cm2 sr

VSU Two color LCD-TFT oculars XGA, 1024 x 768 pixels at 10 Hz Field of view: 35° diagonal (21° V 28° H) Luminance 5-50 FL Contrast 40:1 256 colors out of a 16 million colors palette Video memory: 2 MB

EEG= ElectroEncephaloGraf

VSU= Visual Stimulating Unit

- In presa dati continua
- Utilizzata dalla NASA come strumento operativo per misura della radiazione in tempo reale.
- Programma ESA per lo shielding: ALTEA-Shield.
 Training Astronauta Paolo Nespoli: installazione e attivazione di ALTEA-Shield il 23/4/2011 sulla ISS.

Apparato per l'esterno della ISS: Si-Rad

•Confronto ambiente radioattivo tra interno ed esterno della stazione.

Per FEBO, piattaforma esterna di Kayser Italia srl: selezionato (primo posto) per studio di fase A bando ASI "Missioni di opportunità"
FEBO selezionato per fase B

• Futuro di FEBO (come di MAGIA, bando "Piccole Missione", parte di MoonLIGHT-ILN) ignoto per ora

•Completamento Schede front-end Sirad Flight model

•Realizzazione trigger flight model

Board di Front End con rivelatori al silicio 8x8x 0.38 cm (32 strips). Un secondo rivelatore con strip ortogonali è collocato al di sotto di quello visibile in figura.

Si-Rad

Importante contributo LNF/SPCM

- Il modello tecnologico è terminato
- Vanno inseriti i silici
- Sistema di anticoincidenza
- Cablaggio finale
- Test alla BTF
- Test presso altri acceleratori
- Selezionato per la Stazione Spaziale. Progetto FEBO.

(Chinese Seismo-Electromagnetic Satellite)

- Studio delle variazioni repentine di flussi di protoni ed elettroni intrappolati nelle fasce di radiazione a seguito di perturbazioni causate da eventi sismici (terremoti)
- Realizzazione di una serie di rivelatori:
 - Mini spettrometro magnetico
 - Rivelatore di campo elettrico
 - Rivelatore di campo magnetico
 - Rivelatore di onde e.m. a bassa frequenza

Laboratori Nazionali di Frascati Perugia Roma Tor Vergata

China Earthquake Administration Chinese National Space Agency

SPACE-WEATHER 2012 Gruppo LNF

M.Ricci (Resp. 30%), A.Franceschi (10%), T. Napolitano (10%), B.Spataro (60%)

Attività di responsabilità del gruppo LNF 2010-2011:

Progettazione e realizzazione parti meccaniche rivelatore e prototipi: in particolare, progettazione CAD e realizzazione meccanica di supporto (frames per schede elettroniche e silici + box) per l'Engineering Model (SPCM-LNF) e sua evoluzione in configurazione di volo.
 Studi su configurazioni ottimizzate rivelatori per CSES

Attività prevista gruppo LNF 2011/2012:

•Meccanica SI-RAD per test e completamento apparato per ISS

•Tests su fascio GSI/Darmstadt oppure PSI/Zurich e alla BTF

•Calcoli e simulazioni (Light flashes – Ambiente radiazioni ISS)

• Tests di qualificazione vibrazionali e termo-meccanici

• Continuazione attività di studio e preparazione missione CSES

PREVENTIVO LNF 2012 (PRELIMINARE)

	(kEuro)
Miss. Int	2.0
Miss. Est	6.0
Consumo	10.0
Invent.	5.0
ТОТ	23.0

TOTALE RICH. LNF+ROMA2+<u>NA+PG (new)</u> ≈ 100 KEURO

Concludiamo la fisica interdisciplinare con l'evento interdisciplinare spaziale per eccellenza ...

Last Ever Shuttle to Haul Raffaello Logistics Module to the International Space Station

By Ken Kremer Posted Wednesday, June 15, 2011

STS-135 Atlantis, scheduled for July 8, 2011:

30 years of Space Shuttle flights

Shuttle Atlantis at Launch Pad 39A at sunrise waiting to liftoff for her final flight and the final flight of the space shuttle program.

INFN-GRII (& GRV-LNF) on International Space Station: STS-134, AMS & Roberto Vittori (Co-PI of ETRUSCO-2)

All images credit Ken Kremer (http://www.kenkremer.com).

3rd Multi-purpose Pressurized Logistics Module "Raffaello", made in Italy: up to 10 tons of experiments on the ISS

<u>Viva l'Italia !</u>

Raffaello multipurpose logistics module (MPLM) inside the Space Station Processing Facility (SSPF). On the very last flight of the Space Shuttle program, Raffaello will be delivered to the ISS by Space Shuttle Atlantis on the STS-135 mission. Robotic arm grapple fixture at top, left. The cylindrical module is approximately 21 feet long and 15 feet in diameter, weighing almost 4.5 tons. It can carry up roughly 25,000 pounds of cargo to orbit.