

Filippo Fabbri, ISTING CONTROLLER

ISTITUTO GENERANO

ISTITUTO di Nanoscienze

CNR, Pisa CNR, Pisa

Optical Characterization of Implantation Defects: the case study of sulphur implanted silicon

SHOW, ST

What is LUMINESCENCE?

**Optical Characterization of Implantation Defects

What is LUMINESCENCE?

IUPAC says the spontaneous emission of

radiation from an electronically excited species

not in equilibrium with its environment** Optical Characterization of Implantation Defects

What is LUMINESCENCE?

IUPAC says the spontaneous emission of

radiation from an electronically excited species

not in equilibrium with its environment Optical Characterization of Implantation Defects
What is LUMINESCENCE?
IUPAC says the spontaneous emission of
radiation from an electronically excited species
not in equilibrium with its environment
ut there are several mo

But there are several modes to excite radiation emission

Electroluminescence Photoluminescence

What is Cathodoluminescence? Funny Notes:

Definition

Cathodoluminescence is the physical process by which a Optical Characterization of Implantation Defects

What is Cathodoluminescence?

Definition

Cathodoluminescence is the physical process by which a

system, excited by high energy impinging electrons,

emits photons during System, excited by high energy impinging electrons, and a lower energy state. The control of the physical process by which a system, excited by high energy impinging electrons, emits photons during relaxation to a lower en

Main applications

Geology / Gemology Material Science

Funny Notes: cathodoluminescence was the basic mechanism of old-gen TV

How to acquire Cathodoluminescence?

How to acquire Cathodoluminescence?

CL experiments can be carried out in:

- Scanning Transmission Electron Microscope (STEM)

How to acquire Cathodoluminescence spectrum or map?

Hyperspectral Data Cube (Spectrum Image)

A 3D dataset (data cube) containing both spatially- and spectrally- resolved information

- A two-dimensional array of spectra
- An aligned stack of wavelength-filtered images; typically > 20 wavelength slices

Advantages include:

- All spatial and spectral information captured; no a priori knowledge required
- Spectra or wavelength-filtered images may be extracted in post processing analysis
- Quantitative mapping using mathematical
processing; correlation with other hyperspectral data techniques

How to acquire a Cathodoluminescence spectrum?

How to acquire a Cathodoluminescence map?

Wavelength-filtered image slices

What are the ADVANTEGES of CL spectroscopy and imaging? Optical Characterization of Implantation Defects
What are the ADVANTEGES of CL spectroscopy
and imaging?
Detection of luminescence with different nature and their interaction
Correlative analysis with other electron excita Optical Characterization of Implantation Defects
hat are the ADVANTEGES of CL spectroscopy
ad imaging?
ection of luminescence with different nature and their interaction
Correlative analysis with other electron excitation

Electron penetration depth is variable: depth-resolved studies, imaging buried structures Detection of luminescence with different nature and their inte
Correlative analysis with other electron excitation based
Electron penetration depth is variable:
depth-resolved studies, imaging buried structures
Nanoscale l

Nanoscale lateral resolution based on electron excitation

In-Situ CL analysis of electron irradiated materials

The case study: the luminescence of sulphur implanted silicon

What are the ADVANTEGES of CL spectroscopy and imaging? Optical Characterization of Implantation Defects
What are the ADVANTEGES of CL spectroscopy
and imaging?
Detection of luminescence with different nature and their interaction
Correlative analysis with other electron excita Optical Characterization of Implantation Defects

hat are the ADVANTEGES of CL spectroscopy

id imaging?

ection of luminescence with different nature and their interaction

Correlative analysis with other electron excitat

Electron penetration depth is variable: depth-resolved studies, imaging buried structures Detection of luminescence with different nature and their inte
Correlative analysis with other electron excitation based
Electron penetration depth is variable:
depth-resolved studies, imaging buried structures
Nanoscale l

Nanoscale lateral resolution based on electron excitation

In-Situ CL analysis of electron irradiated materials

The case study: the luminescence of sulphur implanted silicon

Optical Characterization of Implantation Defects

Detection of luminescence with different nature and their

High energy electron probe allows the excitation of insulators and wide bandgap interaction **Optical Characterization of Implantation Defects**
 Detection of luminescence with different nature and their

High energy electron probe allows the excitation of insulators and wide bandgap

semiconductor

SiO₂ E_g

semiconductor

Optical Characterization of Implantation Defects
Detection of luminescence with different nature and their
What is an exciton? An exciton is a bound state of an electron and an hole
What is an exciton? An exciton is a bo interaction **Optical Characterization of Implantation Defects**
 Detection of Iuminescence with different nature and their interaction
 What is an exciton? An exciton is a bound state of an electron and an hole which are attracted

racterization of Implantation Defects
escence with different nature and their
An exciton is a bound state of an electron and an hole
which are attracted to each other by the electrostatic
Coulomb force.
Wannier – Mott Propertization of Implantation Defects
 Example 19 Seconds with different nature and

An exciton is a bound state of an electron and

which are attracted to each other by the electron

Coulomb force.
 Concerned to the Frenkel exciton

Detection of luminescence with different nature and their interaction of luminescence with different nature and their interaction $\begin{array}{c} \sqrt{\text{conduction band}} \end{array}$ interaction

In CL experiments is possible to detect indirect bandgap transition due to the local generation of thermal phonons.

Nano Lett. 2013, 13, 5900–5906

Optical Characterization of Implantation Defects
 Detection of luminescence with different nature and their interaction

SEM-CL: Detection of defect related emission (GL) on lateral interaction

SEM-CL: Detection of defect related emission (GL) on lateral surface of ZnO NanoRod

Optical Characterization of Implantation Defects
 **Detection of luminescence with different nature and their

STEM-CL: Interaction of ZnO exciton with gold nano-aggregate surface plasmon.** interaction

STEM-CL: Interaction of ZnO exciton with gold nano-aggregate surface plasmon.

What are the ADVANTEGES of CL spectroscopy and imaging? Optical Characterization of Implantation Defects
What are the ADVANTEGES of CL spectroscopy
and imaging?
Detection of luminescence with different nature and their interaction
Correlative analysis with other electron excita Optical Characterization of Implantation Defects

hat are the ADVANTEGES of CL spectroscopy

id imaging?

ection of luminescence with different nature and their interaction

Correlative analysis with other electron excitat

Electron penetration depth is variable: depth-resolved studies, imaging buried structures Detection of luminescence with different nature and their inte
Correlative analysis with other electron excitation based t
Electron penetration depth is variable:
depth-resolved studies, imaging buried structures
Nanoscale

Nanoscale lateral resolution based on electron excitation

In-Situ CL analysis of electron irradiated materials

The case study: the luminescence of sulphur implanted silicon

Correlative analysis with other electron excitation based techniques

**ation Defects
ation based techniques
The interaction of the primary
electron beam with the sample
gives rise to several results
(SE, BSE, X-ray), therefore it is ation Defects
ation based techniques**
The interaction of the primary
electron beam with the sample
gives rise to several results
(SE, BSE, X-ray), therefore it is
possible to take advantages of **ation Defects
ation based techniques**
The interaction of the primary
electron beam with the sample
gives rise to several results
(SE, BSE, X-ray), therefore it is
possible to take advantages of
the different signals to ca **ation Defects

ation based techniques**

The interaction of the primary

electron beam with the sample

gives rise to several results

(SE, BSE, X-ray), therefore it is

possible to take advantages of

the different signal **ation Defects

ation based techniques**

The interaction of the primary

electron beam with the sample

gives rise to several results

(SE, BSE, X-ray), therefore it is

possible to take advantages of

the different signal **ation Defects

ation based techniques**

The interaction of the primary

electron beam with the sample

gives rise to several results

(SE, BSE, X-ray), therefore it is

possible to take advantages of

the different signal **ation Defects

ation based techniques

The interaction of the primary

electron beam with the sample

gives rise to several results

(SE, BSE, X-ray), therefore it is

possible to take advantages of

the different signals ation Defects

ation based techniques**

The interaction of the primary

electron beam with the sample

gives rise to several results

(SE, BSE, X-ray), therefore it is

possible to take advantages of

the different signal The interaction of the primary
electron beam with the sample
gives rise to several results
(SE, BSE, X-ray), therefore it is
possible to take advantages of
the different signals to carry
out correlative analyses in
terms

-
-
-

 \rightarrow X

Correlative analysis with other electron excitation based techniques

Composition Mapping of Cadmium Telluride/Sulphide Alloy

- CL maps the bandgap
- Estimate Sulphur content CdTe_{1-x}S_x

Image information: Band gap map of CdTe_{1x}S_x alloy extracted by Gaussian fitting from CL spectrum-image, courtesy of Dr B. Mendis, Durham University

Correlative analysis with other electron excitation based techniques

Correlative analysis with other electron excitation based techniques
This is not true for every SEM base techniques, in fact EBIC and CL are based on two different
way to collect the electron excited carriers:
Nature Ma

What are the ADVANTEGES of CL spectroscopy and imaging? Optical Characterization of Implantation Defects
What are the ADVANTEGES of CL spectroscopy
and imaging?
Detection of luminescence with different nature and their interaction
Correlative analysis with other electron excita Optical Characterization of Implantation Defects

hat are the ADVANTEGES of CL spectroscopy

id imaging?

ection of luminescence with different nature and their interaction

Correlative analysis with other electron excitat

Electron penetration depth is variable: depth-resolved studies, imaging buried structures Detection of luminescence with different nature and their inte
Correlative analysis with other electron excitation based the
Electron penetration depth is variable:
depth-resolved studies, imaging buried structures
Nanosca

Nanoscale lateral resolution based on electron excitation

In-Situ CL analysis of electron irradiated materials

The case study: the luminescence of sulphur implanted silicon

Electron penetration depth is variable

Generation volume in a material

How to perform Monte Carlo simulations

2 Casino

A free software package for Monte Carlo simulation of electron trajectories in solids

Authors: Dominique Drouin, Alexandre Real Couture, Raynald Gauvin, Pierre Hovington, Paula Homy and Hendrix Demers

Platform: Windows

- **Citations:**
	- 1. P. Hovington, D. Drouin and R. Gauvin, "CASINO: A New Monte Carlo Code in C Language for Electron Beam Interaction - Part I: Description of the Program", Scanning, 19 (1997), 1-14.
	- 2. D. Drouin, P. Hovington and R. Gauvin, "CASINO: A New Monte Carlo Code in C Language for Electron Beam Interaction - Part II: Tabulated Values of the Mott Cross Section", Scanning, 19 (1997), 20-28.
	- 3. D. Drouin, P. Hovington, R. Gauvin, D.C. Jov and N. Evans, "CASINO: A. New Monte Carlo Code in C Language for Electron Beam Interaction -Part III: Stopping Power at Low Energies", Scanning, 19 (1997) 29-35.
	- 4. D. Drouin, A.R.Couture, D. Joly, X. Tastet, V. Aimez and R. Gauvin, "CASINO V2.42 - A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users", Scanning, 29 (2007), $92 - 101.$

Link: http://www.gel.usherbrooke.ca/casino/What.html

The last version of CASINO has a CAD based system for simulating 3D structures!

If you don't want to run Monte Carlo simulations

Optical Characterization of Implantation Defects
f you don't want to run Monte Carlo simulations
The maximum effective penetration depth (Grün range, R_G) to which energy dissipation
(and e-h pairs generation) extend **Example 11 September 12 September 11 Se Continuo Cont** s
by dissipation
) and of the **Solution Characterization of Implantation Defects**
 Solution 1997 From Solution Carlo Simulations

The maximum effective penetration depth (Grün range, R_G) to which energy dissipation

(and e-h pairs generation) exte The maximum effective penetration depth (Grün range, R_G) to whicl
and e-h pairs generation) extends is a function of the beam ene
material density (p). This is in general parameterized as:
 $R_G = \frac{k}{\rho} E_B^{\alpha}$
For a unifo $\epsilon_{\rm B}$) and of the
<25 keV and
7 and k=2.76

$$
R_G = \frac{k}{\rho} E_B^{\alpha}
$$

and e-h pairs generation) extends is a function of the beam energy (E_B) and of the
material density (p). This is in general parameterized as:
 $R_G = \frac{k}{\rho} E_B^{\alpha}$
For a uniform single-type material:
Everhart and Hoff (197 10<Z<15,

For a uniform single-type material:

Everhart and Hoff (1971) derived k=3.98 x 10⁻² and α =1.75 valid for 5<E₈<25 keV and 10<Z<15,

Kanaya and Okayama (1972) derived a more general expression with α =1.67 and k=2. For a uniform single-type material:
Everhart and Hoff (1971) derived k=3.98 x 10⁻² and α =1.75 valid for 5<E₈<25 keV and 10<Z<15,
Kanaya and Okayama (1972) derived a more general expression with α =1.67 and k=2.76 data.

Electron penetration depth is variable: depth-resolved studies

ACS Appl. Mater. Interfaces 2015, 7, 18201–18205

Electron penetration depth is variable: imaging buried structures

extended defects in hexagonal boron nitride flakes

What are the ADVANTEGES of CL spectroscopy and imaging? Optical Characterization of Implantation Defects
What are the ADVANTEGES of CL spectroscopy
and imaging?
Detection of luminescence with different nature and their interaction
Correlative analysis with other electron excita Optical Characterization of Implantation Defects
hat are the ADVANTEGES of CL spectroscopy
ad imaging?
ection of luminescence with different nature and their interaction
Correlative analysis with other electron excitation

Electron penetration depth is variable: depth-resolved studies, imaging buried structures Detection of luminescence with different nature and their inte
Correlative analysis with other electron excitation based
Electron penetration depth is variable:
depth-resolved studies, imaging buried structures
Nanoscale l

Nanoscale lateral resolution based on electron excitation

In-Situ CL analysis of electron irradiated materials

The case study: the luminescence of sulphur implanted silicon

Nanoscale lateral resolution based on electron excitation

The main feature, that allows the nanoscale lateral resolution of CL, is the size of the primary electron beam

The main limiting factor is the interaction of the primary beam with the sample in analysis

Nanoscale lateral resolution based on electron excitation

ion Defects

n excitation

LATERAL RESOLUTION :

the minimum detectable

distance between two

regions presenting different **ion Defects

n excitation

LATERAL RESOLUTION** :

the minimum detectable

distance between two

regions presenting different

CL intensity. **ion Defects

n excitation

LATERAL RESOLUTION** :

the minimum detectable

distance between two

regions presenting different

CL intensity. **ion Defects

In excitation

LATERAL RESOLUTION** :

the minimum detectable

distance between two

regions presenting different

CL intensity.

It depends mainly on the **ion Defects

n excitation**

LATERAL RESOLUTION :

the minimum detectable

distance between two

regions presenting different

CL intensity.

It depends mainly on the

size of the recombination **INTERAL RESOLUTION:**
 LATERAL RESOLUTION:

the minimum detectable

distance between two

regions presenting different

CL intensity.

It depends mainly on the

size of the recombination

volume (generation volume

broad

**ION Defects

INTERAL RESOLUTION**

the minimum detectable

distance between two

regions presenting different

CL intensity.

It depends mainly on the

size of the recombination

volume (generation volume

broadened for th **LATERAL RESOLUTION**:
the minimum detectable
distance between two
regions presenting different
CL intensity.
It depends mainly on the
size of the recombination
volume (generation volume
broadened for the diffusion
length) **LATERAL RESOLUTION**:
the minimum detectable
distance between two
regions presenting different
CL intensity.
It depends mainly on the
size of the recombination
volume (generation volume
broadened for the diffusion
length) LATERAL RESOLUTION :
the minimum detectable
distance between two
regions presenting different
CL intensity.
It depends mainly on the
size of the recombination
volume (generation volume
broadened for the diffusion
length) o **LATERAL RESOLUTION**:
the minimum detectable
distance between two
regions presenting different
CL intensity.
It depends mainly on the
size of the recombination
volume (generation volume
broadened for the diffusion
length)

SPATIAL RESOLUTION IMPROVEMENT WITH LOWER ACCELERATING VOLTAGES

Nanoscale lateral resolution based on electron excitation
SEM Image NBE Emission GL Emission

What is the limit of nanoscale detection resolution of SEM-CL?

Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy

Multicolor imaging of lanthanide-based nanoprobes

What are the ADVANTEGES of CL spectroscopy and imaging? Optical Characterization of Implantation Defects
What are the ADVANTEGES of CL spectroscopy
and imaging?
Detection of luminescence with different nature and their interaction
Correlative analysis with other electron excita Optical Characterization of Implantation Defects
hat are the ADVANTEGES of CL spectroscopy
ad imaging?
ection of luminescence with different nature and their interaction
Correlative analysis with other electron excitation

Electron penetration depth is variable: depth-resolved studies, imaging buried structures Detection of luminescence with different nature and their inter
Correlative analysis with other electron excitation based t
Electron penetration depth is variable:
depth-resolved studies, imaging buried structures
Nanoscal

Nanoscale lateral resolution based on electron excitation

In-Situ CL analysis of electron irradiated materials

The case study: the luminescence of sulphur implanted silicon

In-Situ CL analysis of electron irradiated materials

What are the ADVANTEGES of CL spectroscopy and imaging? Optical Characterization of Implantation Defects
What are the ADVANTEGES of CL spectroscopy
and imaging?
Detection of luminescence with different nature and their interaction
Correlative analysis with other electron excita Optical Characterization of Implantation Defects
hat are the ADVANTEGES of CL spectroscopy
ad imaging?
ection of luminescence with different nature and their interaction
Correlative analysis with other electron excitation

Electron penetration depth is variable: depth-resolved studies, imaging buried structures Detection of luminescence with different nature and their inter
Correlative analysis with other electron excitation based to
Electron penetration depth is variable:
depth-resolved studies, imaging buried structures
Nanosca

Nanoscale lateral resolution based on electron excitation

In-Situ CL analysis of electron irradiated materials

The case study: the luminescence of sulphur implanted silicon

CL study of ion implanted materials: Silicon Carbide (4H-SiC)
Superlat & Microstrut. 45, 383 (2009)

Superlat & Microstrut. 45, 383 (2009)

Superlat Characterization of Implantation Defects

Superlat & Microstrut. 4

The Aluminum implantation in 4H-SiC, (employed for p doping) gives rise to a bright emission in the visible $\frac{layer}{7.15 \mu m}$ range, detectable in CL maps.

Cross-sectional CL maps are employed for quality benchmarking of complex 4H-SiC device fabrication

purpose:

What are the ADVANTEGES of CL spectroscopy and imaging? Optical Characterization of Implantation Defects
What are the ADVANTEGES of CL spectroscopy
and imaging?
Detection of luminescence with different nature and their interaction
Correlative analysis with other electron excita Optical Characterization of Implantation Defects
hat are the ADVANTEGES of CL spectroscopy
ad imaging?
ection of luminescence with different nature and their interaction
Correlative analysis with other electron excitation

Electron penetration depth is variable: depth-resolved studies, imaging buried structures Detection of luminescence with different nature and their interaction
Correlative analysis with other electron excitation based techniques
Electron penetration depth is variable:
depth-resolved studies, imaging buried stru

Nanoscale lateral resolution based on electron excitation

In-Situ CL analysis of electron irradiated materials

The case study: the luminescence of sulphur implanted silicon

The case study: the luminescence of sulphur implanted silicon

Depth (nm)

plantation Defects
Fsulphur implanted silicon
Fabrication steps:
1- Ion implantation of sulphur
³²S⁺) with a energy of 95 keV **nplantation Defects

f sulphur implanted silicon**
 Fabrication steps:

1- Ion implantation of sulphur

(³²S⁺) with a energy of 95 keV

and 7° off-normal to prevent $(32S⁺)$ with a energy of 95 keV **ntation Defects

phur implanted silicon

rication steps:

n implantation of sulphur

) with a energy of 95 keV

7° off-normal to prevent

neling. proprimal Defects

f sulphur implanted silicon

Fabrication steps:

1- Ion implantation of sulphur

(³²S⁺) with a energy of 95 keV

and 7° off-normal to prevent

channeling.** channeling. **produce to the Sulphur implanted silicon**
 f sulphur implanted silicon
 f solication steps:

1- Ion implantation of sulphur
 $(^{32}S^{+})$ with a energy of 95 keV

and 7° off-normal to prevent

channeling.

2- Pulsed la

nplantation Defects
 f sulphur implanted silicon
 Fabrication steps:

1- Ion implantation of sulphur
 $(^{32}S^{+})$ with a energy of 95 keV

and 7° off-normal to prevent

channeling.

2- Pulsed laser melting (PLM)

usi **f sulphur implanted silicon**
 Fabrication steps:

1- Ion implantation of sulphur
 $(^{32}S^+)$ with a energy of 95 keV

and 7° off-normal to prevent

channeling.

2- Pulsed laser melting (PLM)

using a XeCl laser (308 nm f sulphur implanted silicon
Fabrication steps:
1- Ion implantation of sulphur
($32S^+$) with a energy of 95 keV
and 7° off-normal to prevent
channeling.
2- Pulsed laser melting (PLM)
using a XeCl laser (308 nm, 4
50 ns lo

This process results in a sulfur (325^+) with a energy of 95 keV
and 7° off-normal to prevent
channeling.
2- Pulsed laser melting (PLM)
using a XeCl laser (308 nm, 4
50 ns long pulses with a power
of 1.7 Jcm⁻²).
**This process results in a sulfur
hyper** doping concentration above the solubility limit of sulfur in silicon

The case study: the luminescence of sulphur implanted silicon

**on Defects

• implanted silicon

Montecarlo simulations

are used to evaluate the

electron penetration

denth for choosing the on Defects

• implanted silicon

Montecarlo simulations

are used to evaluate the

electron penetration

depth for choosing the

accelerating voltage for on Defects

Emplanted silicon

Montecarlo simulations

are used to evaluate the

electron penetration

depth for choosing the

accelerating voltage for

cathodoluminescence on Defects

• implanted silicon

Montecarlo simulations

are used to evaluate the

electron penetration

depth for choosing the

accelerating voltage for

cathodoluminescence

analysis of the samples on Defects

• implanted silicon

Montecarlo simulations

are used to evaluate the

electron penetration

depth for choosing the

accelerating voltage for

cathodoluminescence

analysis of the samples.

We choose 5 keV and** cathodoluminescence **Properties of the sample of the sample of the sample sample sample sample samples.**
Montecarlo simulations
are used to evaluate the
electron penetration
depth for choosing the
accelerating voltage for
cathodoluminescence
 Example 11 Defects
 Community
 Community
 Montecarlo simulations

are used to evaluate the

electron penetration

depth for choosing the

accelerating voltage for

cathodoluminescence

analysis of the samples.

We **Example in the Solution**

Montecarlo simulations

are used to evaluate the

electron penetration

depth for choosing the

accelerating voltage for

cathodoluminescence

analysis of the samples.

We choose 5 keV and

10 ke **Montecarlo** simulations
are used to evaluate the
electron penetration
depth for choosing the
accelerating voltage for
cathodoluminescence
analysis of the samples.
We choose 5 keV and
10 keV CL analyses for
probing the imp Montecarlo simulations
are used to evaluate the
electron penetration
depth for choosing the
accelerating voltage for
cathodoluminescence
analysis of the samples.
We choose 5 keV and
10 keV CL analyses for
probing the impla Montecarlo simulations
are used to evaluate the
electron penetration
depth for choosing the
accelerating voltage for
cathodoluminescence
analysis of the samples.
We choose 5 keV and
10 keV CL analyses for
probing the impla

The case study: the luminescence of sulphur implanted silicon

The case study: the luminescence of sulphur implanted silicon

Thank you for your attention

If you are interested in CL experiments, please contact me: filippo.fabbri@nano.cnr.it

