



Nuclear Physics meets Electronic Technology

Hands-On: Identification of the composition and thickness of the surface layers of a Schottky diode using a 4He charged particle beam.

Raffaele Buompane Università della Campania Luigi Vanvitelli and INFN Napoli

Materials

- Cal.txt file
 - Spectra obtained with a beam ⁴He¹⁺ of 2 MeV.
 - Target with know compositions: Thick Carbon foil (~1 mm), a thin layer of Au and a Thin layer of Al.
 - Charge accumulated= 33 μC.
- SIC_exp_7degree_2_MeV.txt file
 - Spectra obtained with a beam of ⁴He¹⁺ of 2 MeV.
 - Schottky SIC diode.
 - Charge accumulated= 52 μC.
- SIC_exp_7degree_5_MeV.txt file
 - Spectra obtained with a beam of ⁴He¹⁺ of 5 MeV.
 - Schottky SIC diode.
 - Charge accumulated= 0.52 μC.
- SIMNRA-Users-Guide.pdf
- SIMNRA software

Objectives

- Create a new setup (Experiment, Calculation) (from pag. 19 of user guide).
- Import Cal.txt file
 - Complete the setup (Target, Reactions) .
 - Calibrate the detector.
- Import SIC_exp_7degree_2_MeV.txt file
 - Complete the setup (Target, Reactions).
 - Create a diode target based on information available. Fit the experimental curve modifying the target.
- Import SIC_exp_7degree_5_MeV.txt file
 - Complete the setup (Target, Reactions) .
 - Create a diode target based on information available. Fit the experimental curve modifying the target.

Information

- Silicon detector and geometry
 - 50 mm²
 - Distance 10 cm
 - Resolution 25 keV
 - Exit Angle 7°C IBM geometry

- SiC Diode
 - SiC bulk
 - Ohmic contact typically is made with two or more element from Ti, Ni, Al, Au.
 Interact with the expert for more details!