

Nuclear Physics for Semiconductors & Solar Cells

- Nuclear Physics in a Nutshell Origin of Particles Interaction with Matter Irradiations
- Conclusion

Nuclear Physics meets Electronic Technology

• from the website:

"The school is intended for PhD students, young post-docs, and researchers in the fields of nuclear physics, solid-state physics, and electrical engineering"

→ different background, different knowledge

please accept my apologies if I am carrying owls to Athens

www.bundesbank.de/en/tasks/cash-management/eurocoins/regular-coins/greece-623692

Nuclear Physics: Origin of the Elements

- Big Bang: formation of Hydrogen and Helium in the first minutes
- humans consist of Carbon, Oxygen, ...
- all these elements are produced by nuclear reactions in stars

Relative Abundance of Elements in the Solar System

Hydrogen and Helium by far most abundant

https://en.wikipedia.org/wiki/File:SolarSystemAbundances.jpg

STATUS OF THE HZB CYCLOTRON

Atomic structure and Notation of Particles

• atom

- electron shell with Z electrons
- atomic nucleus with A nucleons: Z protons and N neutrons
- Z + N = A
- notation: ${}^{Z+N}_{Z}element = {}^{A}_{Z}element$
- physicists count: 1 proton, 2 protons, 3 protons, ...
- chemists count: Hydrogen, Helium, Lithium, = H, He, Li,
- usual notation: ^Aelement, e.g.: ¹H, ⁴He, ¹²C

Chart of Isotopes

- sort atomic nuclei as a function of proton and neutron number
- Isotopes:
 - same Z
 - same chemical properties
- Isotone
 - same N
- Isobare
 - same A (Z+N)
- neutron number increases more than proton number

Karlsruhe Chart of Isotopes

- sort atomic nuclei as a function Z and N
- valley of stable isotopes: black boxes
- colours indicate decay type:
- pink: ${}^{13}_{8}O \rightarrow {}^{13}_{7}N + \beta^+ + \nu$
- light blue: ${}^{12}_{4}Be \rightarrow {}^{12}_{5}B + \beta^{-} + \overline{\nu}$
- yellow: ${}^8_4B \rightarrow {}^4_2He + \alpha$
- orange: ${}^{16}_{9}F \rightarrow {}^{15}_{8}O + p$
- half lives, rule of thumb:
 the further away from the valley, [6.938; 6.997]
 the shorter the half live

2

H

(1.00784;

1.00811]

STATUS OF THE HZB CYCLOTRON

Nuclear Reactions and Cross Sections

- cross section σ = probability for nuclear reaction
- endotherm (left) and exotherm reactions possible
- ${}^{\bullet}\,\sigma$ increases with projectile energy
- resonances due to energy levels in the nuclei
- above E_{max}: competing nuclear reactions with the same incident particle
- example ¹⁸O(p,n)¹⁸F, 20 MeV protons:
 6.10¹² protons/s lead to ~ 14.10⁹ nuclear reactions
- particle energy below Coulom barrier: few reactions

$$E_c = 1,44 \frac{Z_1 Z_2}{1.2 (A_1^{1/3} + A_2^{1/3})}$$
 (in MeV)

for ¹⁸O(p,n)¹⁸F : E_c = 2.7 MeV

Accelerator Tree

- nuclear physics drove development of accelerators, applications emerged
- today: more than 10000 accelerators world wide, Industry, museum, hospitals
 - Most of them: electrons and light ions up to a few MV
 - Heavy ions up to several 100kV

Accelerators: Applications

• in this school

.

- Rutherford backscattering analysis and the method of channeling. H and D induced Nuclear Reaction Analysis as a complimentary method
- Hands-On: Identification of the composition and thickness of the surface layers of a Schottky diode using a 4He charged particle beam
- Principles of PIXE and PIGE, advanced techniques and applications
- Measurements of Hydrogen concentrations with an 15N-beam principle and applications
- Overview of the radiation induced degradation of electronic devices
- Introduction to semiconductors. Doping and hyperdoping
- Electrical activation of implanted dopants: Statistical mechanical aspects of defect recovery and Hall effect characterization

Origin of Energetic Ions in Space

- supernova explosion of stars eject elements into space
 - (Hubble's view of supernova explosion Cassiopeia A)
- solar wind, flares, and coronal mass ejection bring solar material into space

Sources of High-Energy Ions:

- solar wind and flares, mainly electrons, protons
 10 keV/amu < E_{kin} < 300 MeV/amu
- galactic cosmic rays

p, α, C, N, O, Z> 20

- 10 keV/amu < E_{kin} < 300 MeV/amu
- trapped ions in radiation belts of the earth
- all accompanied by x- and γ -rays
- interact with material

distribution of errors of UoSAT3 in polar orbit

Polar lights observed in south Germany, 10.5.2024 © Alisa Aleker

Interaction of Photons with Matter

- photoelectric effect: 5 eV < E_{photon} < 100 keV</p>
 - excitation of atom (E_{transfer} < E_{binding})
 - ionisation (E_{transfer} > E_{binding})
- Compton effect: 50 keV < E_{photon} < 1 MeV
 - photon scatters on electron, change of direction and energy
- pair production: 1.0222 MeV < E_{photon} < 6 MeV</p>
 - energy is used to create an electron-positron pair
- photodisintegration: 2.18 MeV < E_{photon} < 16 MeV
 - emission of nucleons

Interaction of Photons with Matter

- photons are scattered or absorbed = loss to the beam
- Photon number decreases exponentially: $N_x = N_0 e^{-\mu L}$
 - μ: constant, depends on material and photon energy
- exponential decrease: infinite range
 - practice: define a threshold

Interaction of Electrons with Matter

- electron "meets" electron
 - excitation of atom (E_{transfer} < E_{binding})
 - ionisation (E_{transfer} > E_{binding})
 - large changes of direction → Bremsstrahlung
- scattering on atomic nucleus
 - change of direction in Coulombfield → Bremsstrahlung
- inelastic scattering on atomic nucleus
 - excitation of atomic nucleus

Interaction of Electrons with Matter

- large scattering angles
- increase of electrons by scattering
- finite (!) range

1 MeV electron beam on copper

STATUS OF THE HZB CYCLOTRON

Interaction of Ions with Matter

- with electrons
 - excitation of atom (E_{transfer} < E_{binding})
 - ionisation (E_{transfer} > E_{binding})
 - small energy transfer, as M_{ion} >> M_{electron}
- elastic scattering on atomic nucleus
 - change of energy and direction

inelastic scattering on atomic nucleus: energy nuclear reactions

- e.g. (p,p'), (p,α), (p,2n),....
- large changes in energy and direction

Interaction of Ions with Matter

- ions have many interactions in the material
- small energy loss per interaction, exception: nuclear reactions
- finite (!) range, defined as depth where ion number has halved
- simulation code: SRIM (Stopping and ranges of ions in matter) this afternoon: Hands-On – Simulation of Ion implantation with SRIM software.

Energy Loss of Ions in Material

- loss of energy = stopping power
 linear energy transfer (LET) = dE/dx
- depends on
 - particle energy
 - irradiated material
- examples:
 - protons, 3 MeV in water: 12 keV/µm
 - protons, 68 MeV in water: 1 keV/ μ m
 - protons, 68 MeV in Si: 1.6 keV/μm
 - Neon, 68 MeV in water: 920 keV/μm
 - Neon, 1360 MeV in water: 97 keV/ μ m
 - Neon, 1360 MeV in Si: 160 keV/μm

Energy Loss in Material: Range

- energy loss leads to finite range
- depends on
 - particle energy
 - irradiated material
- non-linear
- example: range of protons and Ne in Si x-axis: Energy/nucleon number ~ velocity

Energy Loss in Material, here: protons and Helium in Silicon

- energy loss due to interaction with atomic nucleus neglectable
- Bethe-Bloch formula describes energy loss due to interactions with electrons:

$$-\frac{dE}{dx} = \frac{4\pi}{m_e} nZ^2 \left(\frac{e^2}{4\pi\epsilon_0 v}\right)^2 \left(ln\left(\frac{2m_e v^2}{l(1-\frac{v^2}{c^2})}\right) - \frac{v^2}{c^2}\right)$$

- n: electron density of material
- Z: atomic number of projectile
- in practice:

energy loss proportional to E_{ion}⁻¹

STATUS OF THE HZB CYCLOTRON

Energy Deposition of Ionizing Radiation

- dose defined as deposited energy per mass
- unit: Gray (Gy) = Joule/kg
- photons:
 - build-up due to secondary electrons
 - exponential decrease
- electrons:
 - build-up due to secondary electrons
 - finite range
- ions, here protons:
 - maximum of energy deposition before end of range
 - Bragg-Peak

relative dose distribution in water

Effects of Ionizing Radiation for Earth

- radiation exposure to humans:
 - formation of free radicals in cells
 - double strand ruptures in DNA
 - problem in space- and air flights (between Apollo 16 and 17 the radiation exposure by charged particles was so high, that 10 h after beginning of the flare lethal doses would have been achieved)
 - desired effect in radiation therapy

Dose in Air Traffic

- effective dose: unit Sievert (Sv) takes into account irradiation type and sensitivity of organs
- website for dose by flights: https://www.sievert-system.org/?locale=en#Calcul
- prediction for my flight
 on Monday, Berlin Rome:
 4.4 μSv

	ПДЭ	Zentrum Berlin	
RÉPUBLIQUE FRANÇAISE Janet Aparta Francaise	IRSEN INSTITUT DE RADIOPROTECTION ET DE SORTE MUCLEARE	None Cosmic radiation Calculate the dose received	
		Calculate the dose received	
		DEPARTURE ARRIVAL: Country: GERMANY Country: ITALY	
		City: BERLIN V Date: 17/06/2024 Date: Uteral: 17/06/2024 Time: Time: 02 violation Time:	
		(scal) UT V 115 V Type of hitcraft: Subsonique V Calculate the cosmic radiation dose received during this flight vol Calculate	
		"Subject to local regulation modifications, the flight dates and times include time difference and, if necessary	

LI7D Helmholtz

Pose received Forecast ca	alculation				
		BERLIN -> ROMA Dose received during the fligh Flying time	t = 0.0044 mSv e = 2:15 (HH:MM)		
Departure city	Arrival city	Departure date	Arrival date	mSv	Estimated
BERLIN	ROMA	17/06/2024 07:15	17/06/2024 09:30	0.0044	Yes
			Total	0.0044	

Radiation Hardness: Single Event Effects

- SEE = each measurable effect on circuits or devices (digital, analogue, optical) produced by an impinging ion
- results in errors in the electronics:
- logical errors:
 - Single Event Upset in memory or on discs, can be removed by rewriting
- hard errors:
 - Single Event Latchup system in undefined status, hardware reset necessary
 - Single Event Burnout high charges destroy device, already observed on ICE – diodes at sea-level

Credit: http://www.windows.ucar.edu/spaceweather

• this afternoon: "Overview of the radiation induced degradation of electronic devices."

Radiation Hardness: Change of Material Properties

radiation induced chemical reactions \rightarrow polymerization

- liquids become viscous
- plastic becomes brittle or sticky

Teflon: 100 Gy photons, polyethylene from 10 kGy on

sometimes desired: electron irradiation of shrinking foil and tubes

- colour changes in glass and plastic
 - normal glass starts changing from 100 Gy on example: plexiglass after several months of proton irradiation
 - lenses, optocouplers and optical fibres loose functionality
- heavy ions:
 - highly ionizing density
 - permanent tracks

example: 350 MeV Au-Irradiation of NiO; single, hollow tracks in TEM picture

© Gregor Schiwietz

Satellites: Spectra and Intensity of Radiation

- depend on orbit: polar, equatorial, flight height,...
- stellar activities: solar eruptions, supernova explosions

TECHNOLOGIES IN A HIGH RADIATION ENVIRONMENT, P. Jenkins et al, doi: 10.1109/PVSC.2009.5411774

Total Ionizing Dose Tests (TID) Test Requirements

- European Space Components Coordination: ESCC No. 22900 by ESA
- radiation source: Cobalt 60 or electron accelerator beam
- accuracy & non uniformity: 10%
- radiation level: depends on mission, varies between 30 Gy (Si) up to 10000 Gy
- dose rate: 36 Gy/h 360 Gy/h ("standard")
 <u>or</u> 0.36 Gy/h 3.6 Gy/h ("low" rate)
- ambient temperature: +20°C ± 10°C
- exposure time: < 96 h
- test steps & exposure: 3 steps:
- $1/3 \cdot \text{Dose}_{\text{specified}} | 1 \cdot \text{Dose}_{\text{specified}} | 3 \cdot \text{Dose}_{\text{specified}}$

γ-rays: Cobalt Source

⁶⁰Co created by neutron capture of ⁵⁹Co,

ß⁻ decay to ⁶⁰Ni

excited nucleus \rightarrow deexcitation by γ -rays emission

pure γ-rays

(ß⁻-rays shielded by stainless steel tube)

γ-energy: 1.17 MeV und 1.33 MeV
 → samples can leave the laboratory directly after the irradiation

Cobalt Source: Dose Rate

- determination of dose with calibrated dose monitor
- dose rate 2024: between 0.4 Gy/h und 100 Gy/h in Si (0.04 krad/h to 10 krad/h), T¹/₂ = 5.2 years
- decrease of dose rate with increasing distance to source

Cobalt Source: Examples

 Spectral shape of GigaPOF-50SR (l) and Fontex (r) radiation induced attenuation, measured for irradiation to 100 Gy at different dose rates
 P. Stajanca and K. Krebber, Sensors 2017, 17, 1959; doi:10.3390/s17091959

 MASCOT (Mobile Asteroid Surface Scout) mission: TID of 4.2 kRad expected → test criterion for commercial of the shelf devices: 10 krad J. Reill, et al, Development of a Mobility Drive Unit for Low Gravity Planetary Body Exploration, http://robotics.estec.esa.int/ASTRA/Astra2013/Papers/reill_2824197.pdf

- k = 130 isochronous sector cyclotron
 10 20 MHz
- two injectors:
- 2 MV Tandetron[™]
- 6 MV Van-de-Graaff,
 backup, time structures
- three target stations:
 - treatment room
 - experimental station
 (I_{max}(DC) = 10 nA)
 - beam line end for tests in cyclotron vault

Protons: Energy

- from accelerator: monoenergetic protons
- energy range: 15 MeV $\leq E_{Proton} \leq$ 72 MeV
- change of energy at accelerator: ca. 6 h
- standard energy: 68 MeV (therapy beam)
 - energy spread < 0.2 MeV</p>
- lower energies by absorber plates
 - typical: 30 MeV und 50 MeV
 - energy spread: ~ 1 MeV
 - change of energy: 2 min.
 - energy determined by 3D camera

Protons: Experimental Station - General

- irradiations in air:
 - beam leaves vacuum of beamline via 80 μm Kapton
 - remote controlled (no access to room when beam is "on")
 - determination of field by apertures or slits
 - samples may be operated during the irradiation
 - samples on xy-table with 0.1 mm precision of positioning
 - stroke: 50 cm in x and y
 - max. weight of samples for the table: 50 kg
 - samples and/or instruments monitored by camera
- if needed: irradiations in vacuum possible

Protons: Experimental Station - Details

- irradiations in air:
 - a) on-line measurement of protons by ionization chamber and automatic switch-off of the beam
 - b) verification of field size by 2D camera
 - c) samples on xy-table with 0.1 mm precision of positioning
 - d) aperture for field definition
 - e) position of samples verified by laser cross-hair
 - f) samples may be operated during the irradiation (movement sensor of the DLR)

Protons: Irradiation Field

- 2D camera for determination of profile and size
- broad beam (scattering system I) ~ 45 mm Ø
 - very homogeneous: ± 3%
 - max. $1 \cdot 10^8 \text{ p/(cm}^2 \text{s})$
- broad beam (scattering system II)
 - homogeneous: ± 10% for 20 mm Ø
 - max. $5 \cdot 10^9 \text{ p/(cm}^2 \text{s})$ _
- rotational symmetry, rectangular or quadratic fields achieved by apertures

Protons: Irradiation Field

- for high intensities: focused beam,
- down to diameter ~ 1 mm Ø
 - max. 5 · 10¹⁰ p/s
- scanned beam
 - up to 30 mm \cdot 30 mm
 - various shapes possible

Protons: Activation – Radiation Protection

- rule of thumb: above 5 MeV nuclear reactions no more negligible
- increasing the energy: more reaction channels open (p,n), (p,α), (p,2n), (p,3n)....
- \rightarrow after irradiation check of samples for activation
- national laws apply! Germany:
 - radiation safety department does "freimessen"
 - dosimetry and γ -spectroscopy (identification of isotopes)
 - each isotope has its own upper limit
- proton reach isotopes, generally short half-lives
- samples can be released after a few days

					02,1		1 708; 1,665	24.
к 1		18	Ar 39,948 #0.68	Ar 31 15,1 ms 37 39 2,00: 1,43. 10p 7,15 339 4,40	Ar 32 98 ms 3 9.0 32 9.75 7.42 7451, 707	Ar 33 174,1 ms st 9,8; m.e. yato nose; 2031 ep 3,17	Ar 34 844 ms 9668 3129	12
		17	CI 35,4527		CI 31 150 ms	CI 32 291 ms 113 17. - 357 4/4 3 22 1/57. - 350 1/57.	CI 33 2,51 s (6 ⁺ 4,5 (1041; 1998; 2957)	WHICH W
16	S 32,066	S 27 21 ms	S 28 125 ms	S 29 187 ms	\$ 30 1.18 s	5 31 2,58 s	S 32 95,02	
	¢ 0,54	6* 80 620 5,91	β ¹ βp 2,98, 1,48; 3,70	157 17 1854 16: 5.44; 2.13	µ* 4.4. 5,1 ∀978	β* 4,4 γ 1856	a C,55 71 arC,367	0.0
15	P 30,973762	P 26 20 ms	P 27 260 ms	P 28 268 ms 5 ⁺ 1, 5 7, 1775 4497 Br 0, 682, 6, 805 16, 2, 105, 1, 454	P 29 4,1 s	P 30 2,50 m	P 31 100 #0,18	
Si 23 42,3 ms	Si 24 140 ms	Si 25 218 ms	Si 26 2,21 s	Si 27 4,18 s	Si 28 92.23	Si 29 4,67	Si 30 3,10	
5* pp 2,40; 2.80. y2s 5,86; 6,18	β ¹ μα 1.51; 4,09	hp 4,05; 0,38; 3.33	µ* 3,8 ⊻820; 1692 m	P ¹ 8,8 × (2210)	or C,17	a 8,13	a D 108	
AI 22 59 ms	Al 23 470 ms	Al 24	Al 25 7,18 s	Al 26 6,858 7.16- 10%	AI 27 100	Al 28 2,246 m	Al 29 6,6 m	
80 1.32; 0.77 829 4,48	and and	1*125. 1 UZ 1350. 5754 61.C. 7782. 78. 5+351.	8* 3.3 v(1612)	9* 12 7 6800 155	a 6,250	97-2.0 71770	9 200 9 1273: 2498 2028 -	
Mg 21 122.5 ms	Mg 22 3,86 s	Mg 23 11,3 s	Mg 24 78.99	Mg 25 10,00	Mg 26 11,01	Mg 27 9,46 m	Mg 28 20,9 h	
8* 332: 1384) 1634*	g* 3.2 *583; 74	8= 2.1 440	e 0,953	a 0 17	a 8,367	7844; 1014 = 0,07	1 342 401: 802	7
	the second se		1 - 00	010 31		140 60	a state to a	

Protons: Examples of Irradiations of Solar Cells

- proton induced damage in c-Si solar cells, changing the IV-characteristics under AM1.5 illumination and the quantum yield spectra
 H.-C. Neitzert et al, EL efficiency degradation of c-Si solar cells after irradiation with protons, phys. Stat. sol. (b) No. 9 (2008) 1877-1883
- absolute PL spectra of the high-gap and lowgap absorbers within the perovskite 2J solar cells (a) and bare absorbers (b) after proton irradiation

F. Lang et al, Proton-Radiation Tolerant All-Perovskite F. Multijunction Solar Cells, Adv. Energy Mater. 2021, 11, 2102246 doi/10.1002/aenm.202102246

Protons: Examples of Irradiations of Electronics

 MASCOT (Mobile Asteroid Surface Scout) mission: commercial of the shelf devices: 1.7 · 10¹⁰ p/cm²,

October 2018: lander did relocate on asteroid surface,

enabled views on asteroid Ryugu!

J. Reill, et al, Development of a Mobility Drive Unit for Low Gravity Planetary Body Exploration,

http://robotics.estec.esa.int/ASTRA/Astra2013/Papers/reill_2824197.pdf

 time-domain waveform (c) and frequency-domain spectrum (d) for different irradiation levels of high energy 68 MeV protons

O. Gueckstock, Radiation hardness of ultrabroadband spintronic terahertz emitters: En-route to a space-qualified terahertz time-domain gas spectrometer,

Appl. Phys. Lett. 124, 000000 (2024); doi: 10.1063/5.0196951

time

Proton Therapy of Ocular Melanoma

 over 25 years treatment of ocular melanoma together with Charité – Universitätsmedizin Berlin

HZB Helmholtz Zentrum Berlin

100-

80

60

40

20

relative dose

- more than 4600 patients treated (12/23)
- local tumour control: 96%
- eye retention rate: 95%
- protons permit confinement of dose to tumour
- HZB: proton energy of 68 MeV
- well adapted energy:

sharp distal fall-off, less than 1 mm 90% - 10% of dose

- enough beam current, treatment time < 1 minute/fraction
- ideal for small structures like eyes (~ 23 mm diameter)

Conclusion

nuclear physics: important on all scales – from atoms to galaxies

• accelerators:

- originally driven by needs of nuclear physics
- today solve problems in solid state physics, medicine, space flights,....
- radiation hardness tests: years between tests and mission \rightarrow long breath needed

Thank you for your attention!

patient statistics based on the apertures used