Framed DDF Operators and Minimally Off-shell Solutions of Virasoro Constraints in Bosonic String Theory
 A Short Presentation

Dripto Biswas
(In collaboration with Igor Pesando)
Based on: 2402.13066v1
University of Turin
Department of Physics

SISSA, Trieste
February 22, 2024

Outline

(1) Introduction
(2) DDF v.s Framed DDF operators (FDDF)
(3) Gauge equivalence of different frames: An example
(4) Amplitudes using (F)DDF

Introduction

What are DDF operators/states?

Figure: Pictorial representation of the standard DDF formulation.

Mathematical definition

- Starting from a tachyon vertex operator,

$$
\begin{equation*}
V_{T}\left(x ; p_{T}\right):=c(x): e^{2 i p_{T} \cdot L(z)}: \tag{1}
\end{equation*}
$$

- Choose a null vector q_{μ} such that, $2 \alpha^{\prime} p_{T} \cdot q=1$. For simplification later on, one usually also chooses,

$$
\begin{equation*}
p_{T}^{+}=p_{T}^{-}=\frac{1}{\alpha^{\prime}} ; p_{T}^{i}=0 ; q^{+}=q^{i}=0 ; q^{-} \neq 0 . \tag{2}
\end{equation*}
$$

- Successively scatter photons of momentum $-q_{\mu}$, polarisation $\epsilon_{\mu}^{(i)}\left(q, p_{T}\right)$ and pick out the on-shell part (pole) of the resulting state (i.e. take the OPE!). Summarising, we get

$$
\begin{equation*}
A_{n}^{i}\left(q, p_{T}\right)=i \sqrt{\frac{2}{\alpha^{\prime}}} \oint_{z=0} \frac{d z}{2 \pi i} \epsilon^{(i)}\left(q, p_{T}\right) \cdot \partial_{z} L e^{2 i n q \cdot L(z)} \tag{3}
\end{equation*}
$$

DDF v.s Framed DDF operators (FDDF)

Definition of FDDF operators

- Introduce a vielbein, $E_{\underline{\mu}}^{\underline{\mu}}$ and its inverse $E_{\underline{\mu}}^{\mu}$, such that

$$
\begin{equation*}
E_{\mu}^{\underline{\mu}} E_{\nu}^{\nu} \eta_{\underline{\mu} \underline{\nu}}=g_{\mu \nu} \tag{4}
\end{equation*}
$$

where, $g_{\mu \nu}$ is the metric in the Action.

- Framed DDF operators in the ghost number sector 0:

$$
\begin{equation*}
\underline{A}_{n}^{i}(E)=i \sqrt{\frac{2}{\alpha^{\prime}}} \oint_{z=0} \frac{d z}{2 \pi i}: \partial_{z} \underline{L}^{i}(z) e^{i n \frac{\underline{L}^{+}(z)}{\alpha^{\prime} \underline{p}_{0}^{+}}}: \tag{5}
\end{equation*}
$$

Brower operators:

$$
\begin{align*}
& \underline{A}_{n}^{-}(E)=i \sqrt{\frac{2}{\alpha^{\prime}}} \oint_{z=0} \frac{d z}{2 \pi i}:\left[\partial_{z} \underline{L}^{-}(z)-i \frac{n}{4 \underline{p}_{0}^{+}} \frac{\partial_{z}^{2} \underline{L}^{+}}{\partial_{z} \underline{L}^{+}}\right] e^{i n \frac{\underline{L}^{+}(z)}{{\alpha^{\prime}}_{\underline{\prime}}^{+}}}:, \tag{6}\\
& \underline{\tilde{A}}_{n}^{-}(E)=\underline{A}_{n}^{-}(E)-\frac{1}{\underline{\alpha}_{0}^{+}} \mathcal{L}_{n}(E)+\frac{D-2}{24} \frac{1}{\underline{\alpha}_{0}^{+}} \delta_{n, 0}, \tag{7}\\
& \quad \mathcal{L}_{m}(E)=\frac{1}{2} \sum_{j=2}^{D-1} \sum_{l \in \mathbb{Z}}: \underline{A}_{l}^{j}(E) \underline{A}_{m-l}^{j}(E): \tag{8}
\end{align*}
$$

Properties

DDF

- Algebra:
$\left[A_{m}^{i}\left(q, p_{T}\right), A_{n}^{j}\left(q, p_{T}\right)\right]=$ $m \delta^{i j} \delta_{m+n, 0}$. Derivation uses relations between q, p_{T}, ϵ explictly.
- Conformal properties:

$$
\left[L_{n}, A_{m}^{i}\left(q, p_{T}\right)\right] \propto \sin \left(2 \pi m \alpha^{\prime} p_{0} \cdot q\right) .
$$

- Mass-shell:
$A_{-n}^{i}\left|k_{T}\right\rangle$ has momentum
$p_{n}=k_{T}-n q \Longrightarrow-\alpha^{\prime} p_{n}^{2}=n-1$

FDDF

- Algebra:

$$
\left[\underline{A}_{m}^{i}(E), \underline{A}_{n}^{j}(E)\right]=m \delta_{m+n, 0} \delta^{i j} .
$$

- Conformal properties:
$\left[L_{n}, \underline{A}_{m}^{i}\right]=0$.
$\left[L_{n}, \underline{\tilde{A}}_{m}^{-}\right]=0$.
- Mass-shell:

Need not satisfy! Only $\underline{p}_{0}^{+} \neq 0$.

Gauge equivalence of different frames: An example

On-shell gauge equivalence $(N=1)$

- The same (physical) $N=1$ state with momentum k_{μ} and polarization ϵ_{μ} are related in two different frames E, \hat{E} as,

$$
\begin{gather*}
\underline{\epsilon}_{(\hat{E}) i} \underline{A}_{-1}^{i}(\hat{E})\left|\underline{k}_{T(\hat{E})}\right\rangle=\underline{\epsilon}_{(E) i} \underline{A}_{-1}^{i}(E)\left|\underline{k}_{T(E)}\right\rangle+L_{-1} \xi|k\rangle \tag{9}\\
\Longrightarrow \underline{\epsilon}_{(\hat{E}) i} \hat{E}_{\bar{\mu}}^{i}=\underline{\epsilon}_{(E) i} E_{\bar{\mu}}^{i}+\xi k_{\mu} \tag{10}
\end{gather*}
$$

- This is a set of D equations in $D-1$ unknowns, i.e. $\underline{\epsilon}_{(E) i}$ and ξ. The system is soluble on-shell where $k^{2}=0$ and $k \cdot \epsilon=0$. In fact contracting with k and (an auxiliary null vector) $\bar{k}(k \cdot \bar{k}=-1)$ we get

$$
\begin{align*}
& \underline{\epsilon}_{(\hat{E}) i} \underline{\underline{k}}_{(\hat{E})}^{i}=\underline{\epsilon}_{(E) i} \underline{k}_{(E)}^{i}+\xi k^{2} \quad \Rightarrow \quad 0=\xi k^{2}, \\
& \underline{\epsilon}_{(\hat{E}) i} \overline{\bar{k}}_{(\hat{E})}^{i}=\underline{\epsilon}_{(E) i} \overline{\underline{k}}_{(E)}^{i}-\xi . \tag{11}
\end{align*}
$$

?
What happens when we go off-shell and $k^{2} \neq 0$ anymore?

Off-shell gauge equivalence $(N=1)$

Problem: The system (10) is not solvable off-shell!
Solution: Use the (improved) Brower states generated by $\underline{\tilde{A}}^{-}$.

- The same (off-shell) $N=1$ state with momentum k_{μ} and polarization ϵ_{μ} are related in two different frames E, \hat{E} as,

$$
\begin{equation*}
\left|k, \epsilon_{(\hat{E})}\right\rangle=\left|k, \epsilon_{(E)}\right\rangle+\zeta \underline{\tilde{A}}_{-1}^{-}(E)\left|\underline{k}_{T}\right\rangle . \tag{12}
\end{equation*}
$$

- Then we get,

$$
\begin{equation*}
\underline{\epsilon}_{(\hat{E}) i} \Pi_{\mu}^{i}(\hat{E})=\underline{\epsilon}_{(E) i} \Pi_{\mu}^{i}(E)+\zeta\left(E_{\overline{\bar{\prime}}}^{-}+\frac{-2 \underline{k}_{T+1}^{-} \underline{\underline{k}}^{+}+2 \vec{k}^{2}}{2\left(\underline{k}^{+}\right)^{2}} E_{\mu}^{+}-\frac{\underline{k}^{j}}{\underline{k}^{+}} E_{\mu}^{\frac{j}{\mu}}\right), \tag{13}
\end{equation*}
$$

where, $\Pi_{\mu}^{\underline{i}}=E_{\mu}^{i}-\frac{\underline{p}_{0}^{i}}{\underline{p}_{0}^{+}} E_{\mu}^{+} ; \quad \underline{k}_{T+N}^{-}=\underline{k}_{T}^{-}+\frac{N}{2 \alpha^{\prime} \underline{k}^{+}}$.

- $D-1$ equations in $D-1$ unknowns! Therefore,

$$
\begin{equation*}
\zeta=\underline{\epsilon}_{(\hat{E}) i} \Pi \frac{i}{\mu}(\hat{E}) E_{\underline{-}}^{\mu}, \quad \underline{\epsilon}_{(E) i}=\underline{\epsilon}_{(\hat{E}) j} \Pi \frac{j}{\mu}(\hat{E}) E_{\underline{i}}^{\mu}-\frac{\underline{\underline{k}}_{i}}{\underline{k}^{+}} \underline{\epsilon}_{(\hat{E}) j} \Pi \frac{j}{\mu}(\hat{E}) E_{\underline{-}}^{\mu} \tag{14}
\end{equation*}
$$

Amplitudes using (F)DDF

Chaotic DDF scattering amplitudes

(a)

(b)

Figure: Fig. 7 of [1]: (a) 3-pt scattering process with 1 HES. (b) Kinematics in the scattering plane.

- It was found in [1] and subsequently studied in [2, 3, 4, 5], that the 3-point scattering amplitude involving a Highly Excited String (HES) DDF state exhibits 'chaos'.

$$
\begin{equation*}
\mathcal{A} \propto \prod_{m}\left[\sin \left(\pi m p_{3} \cdot q\right)\right]^{n_{m}} ; \quad \sum_{m} n_{m}=N \tag{15}
\end{equation*}
$$

Plots of chaotic 3-point amplitudes

(a)

(b)

Figure: Fig. 9 of [1]. (a) $N=50$ state with $n_{11}=n_{7}=n_{5}=1, n_{4}=4, n_{3}=3, n_{1}=2$. (b) Slightly different $N=50$ state with $n_{12}=n_{6}=1$ and $n_{11}=n_{7}=0$, and other occupation numbers unaffected.

- A detector moving in the θ-direction will detect erratic peaks and zeros of scattered tachyons (in this case).
- The authors in $[4,5]$ proposed new measures for the 'chaotic' behavior by studying the spacing of the amplitude peaks.

$?$

What could be the possible reasons for this behavior?

3-point scattering involving massive $N=6$ scalar

(In collaboration with Raffaele Marotta)

- We suspect that the 'chaos' is due to the 'spin content' of the HES involved in the scattering.
- To see this in an example, we consider the $N=6$ transverse scalar formed using FDDF operators as,

$$
\begin{align*}
\left|S_{6}\right\rangle= & {\left[c_{1}(5,1)+c_{2}(4,2)+c_{3}(3,3)+c_{4}(1,1)(3,1)\right.} \\
& \left.+c_{5}(1,1)(2,2)+c_{6}(2,1)^{2}+c_{7}(1,1)^{3}\right]\left|k_{T}\right\rangle \tag{16}
\end{align*}
$$

where, $(m, n)=\underline{A}_{-m}^{j} \cdot \underline{A}_{-n}^{j}$.

- For generic c_{i} and spacetime $\operatorname{dim} . D,\left|S_{6}\right\rangle$ transforms as a tensor under $S O(D-1)$. Only in $D=26$ and for the particular choice (upto rescaling) $\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right)=(-2 / 7,4,-10 / 3,1,-9 / 14,-2 / 7,-5 / 84),\left|S_{6}\right\rangle$ is a scalar!

Amplitude computation

- We define the coherent open-string state as

$$
\begin{equation*}
\left|\left\{\lambda_{n}^{i}\right\}, \underline{k}_{T}\right\rangle \equiv e^{\sum_{i=2}^{D-2} \sum_{n=1}^{\infty} \lambda_{n}^{i} \underline{A}_{-n}^{i}}\left|\underline{k}_{T}\right\rangle \tag{17}
\end{equation*}
$$

- We use the Sciuto-Della Selva-Saito (SDS) to get the corresponding vertex operator and insert it in an M-point correlator to get,

$$
\begin{equation*}
\left\langle S_{1} . . S_{M}\right\rangle=\exp \left[\sum_{t=1}^{M} \sum_{i} \sum_{n \in \mathbb{N}} \lambda_{[t] n}^{i} I_{t, n}+\frac{1}{2} \sum_{n, m \in \mathbb{N}} \sum_{i} \sum_{r, t} \lambda_{[r] n}^{i} \lambda_{[t] m}^{i} J_{r, n ; t, m}\right] \tag{18}
\end{equation*}
$$

where, $I_{t, n}$ and $J_{r, n ; t, m}$ are complex integrals that have been computed explicitly (at least for $M=3$).

- For $M=3$ on-shell amplitudes, there is no integral over the vertex operator insertions x_{i}. We just sum over the other Chan-Paton ordering to get the amplitude.

Plot of the amplitude

Figure: Plot of the amplitude with c_{4} taking 5 values. The sensitivity of the amplitude zeros and peaks to the c_{i} is high.

- On-shell, the scattering amplitude of 3 scalars, $\left|S_{6}\right\rangle$ and two tachyons is a number (no angular dependence) as shown by the green line in the figure.
- Shifting a single parameter by a small amount turns $\left|S_{6}\right\rangle$ into a large 'mix of spins'.
- The amplitude develops peaks as the 'spin content' changes! For large N, $\left|S_{N}\right\rangle$ has very complicated numerical coefficients involved.

An example: two scalars at $N=8,10$

$$
\begin{align*}
\left|S_{8}\right\rangle= & 36828(1,1)^{2}(2,2)+41888(1,1)(2,1)^{2}+2745(1,1)^{4} \\
& +19472(3,1)^{2}+66000(2,2)(3,1)-70608(1,1)^{2}(3,1) \\
& -187264(2,1)(4,1)+440192(1,1)(3,3)+78848(2,1)(3,2) \\
& +111808(1,1)(5,1)+1392160(4,4)-564256(1,1)(4,2) \tag{19}\\
\left|S_{10}\right\rangle= & 593415(1,1)^{3}(2,2)+868520(1,1)^{2}(2,1)^{2}+33291(1,1)^{5} \\
& \quad-1157970(1,1)^{3}(3,1)+883080(1,1)(2,2)^{2}+2622680(2,1)^{2}(2,2) \\
+ & 1174080(1,1)(2,1)(3,2)+3107520(1,1)(3,1)^{2}-1771280(2,1)^{2}(3,1) \\
+ & 4587240(2,2)(3,3)+9687360(1,1)^{2}(3,3)+809280(3,2)^{2} \\
+ & 10403520(3,2)(4,1)-5470400(1,1)(2,1)(4,1)-10663920(3,1)(3,3) \\
& \quad-3264520(2,2)(4,2)-12196000(1,1)^{2}(4,2)-5282480(4,1)^{2} \\
+ & 59537420(1,1)(4,4)+21296960(2,1)(4,3)+11254000(3,1)(4,2) \\
& \quad-451840(3,1)(5,1)-7603520(2,2)(5,1)+2070100(1,1)^{2}(5,1) \\
+ & 158253184(5,5)-74087040(1,1)(5,3)-30050720(2,1)(5,2) \\
& \quad 176529120(6,4)+13053600(1,1)(6,2)+7112640(2,1)(6,1) \\
+ & 3818560(8,2)+9447520(7,3)-211840(1,1)(7,1) \tag{20}
\end{align*}
$$

An example: $\left|S_{10}\right\rangle$ coefficients contain large primes!

$$
\begin{align*}
& \quad\left|S_{10}\right\rangle=3^{2} * 5 * 13187(1,1)^{3}(2,2)+2^{3} * 5 * 21713(1,1)^{2}(2,1)^{2}+3^{5} * 137(1,1)^{5} \\
& -2 * 3 * 5 * 11^{3} * 29(1,1)^{3}(3,1)+2^{3} * 3^{2} * 5 * 11 * 223(1,1)(2,2)^{2}+2^{3} * 5 * 173 * 379(2,1)^{2}(2,2) \\
& +2^{6} * 3 * 5 * 1223(1,1)(2,1)(3,2)+2^{6} * 3^{2} * 5 * 13 * 83(1,1)(3,1)^{2}-2^{4} * 5 * 7 * 3163(2,1)^{2}(3,1) \\
& +2^{3} * 3 * 5 * 7 * 43 * 127(2,2)(3,3)+2^{6} * 3 * 5 * 10091(1,1)^{2}(3,3)+2^{6} * 3^{2} * 5 * 281(3,2)^{2} \\
& +2^{6} * 3 * 5 * 10837(3,2)(4,1)-2^{6} * 5^{2} * 13 * 263(1,1)(2,1)(4,1)-2^{4} * 3^{3} * 5 * 4937(3,1)(3,3) \\
& -2^{3} * 5 * 7 * 89 * 131(2,2)(4,2)-2^{5} * 5^{3} * 3049(1,1)^{2}(4,2)-2^{4} * 5 * 7 * 9433(4,1)^{2} \\
& +2^{2} * 5 * 149 * 19979(1,1)(4,4)+2^{6} * 5 * 66553(2,1)(4,3)+2^{4} * 5^{3} * 17 * 331(3,1)(4,2) \\
& -2^{8} * 5 * 353(3,1)(5,1)-2^{6} * 5 * 23761(2,2)(5,1)+2^{2} * 5^{2} * 127 * 163(1,1)^{2}(5,1) \\
& +2^{7} * 179 * 6907(5,5)-2^{7} * 3 * 5 * 47 * 821(1,1)(5,3)-2^{5} * 5 * 7^{2} * 3833(2,1)(5,2) \\
& -2^{5} * 3 * 5 * 61 * 6029(6,4)+2^{5} * 3^{2} * 5^{2} * 7^{2} * 37(1,1)(6,2)+2^{6} * 3 * 5 * 31 * 239(2,1)(6,1) \\
& +2^{6} * 5 * 11933(8,2)+2^{5} * 5 * 137 * 431(7,3)-2^{7} * 5 * 331(1,1)(7,1) \tag{21}
\end{align*}
$$

Ongoing and future work

- Given that FDDF are good conformal operators, one can explicitly compute minimally off-shell amplitudes (ongoing work).
- It would be interesting to study the on-shell 'chaotic' behaviour of the amplitudes for HES and its quantitative dependence on the 'spin content' of the DDF states involved (ongoing+future).
- A saddle point analysis of the correlator integrals would shed light on higher-order correlator structures as the explicit integrals are complicated (ongoing).
- We also hope to soon extend the FDDF formalism to include superstrings (future).
- Relation between massive string scattering amplitudes and those involving black holes using FDDF, possibly along the lines of Amati and Russo [6], and related works (future).

References

[1] David J. Gross and Vladimir Rosenhaus. Chaotic scattering of highly excited strings. Journal of High Energy Physics, 2021(5):48, May 2021.
[2] Vladimir Rosenhaus. Chaos in a many-string scattering amplitude. Phys. Rev. Lett., 129:031601, Jul 2022.
[3] Maurizio Firrotta and Vladimir Rosenhaus. Photon emission from an excited string. JHEP, 09:211, 2022.
[4] Massimo Bianchi, Maurizio Firrotta, Jacob Sonnenschein, and Dorin Weissman. Measure for Chaotic Scattering Amplitudes. Phys. Rev. Lett., 129(26):261601, 2022.
[5] Massimo Bianchi, Maurizio Firrotta, Jacob Sonnenschein, and Dorin Weissman. Measuring chaos in string scattering processes. Phys. Rev. D, 108(6):066006, 2023.
[6] D. Amati and J.G. Russo. Fundamental strings as black bodies. Physics Letters B, 454(3):207-212, 1999.

Thank you!

More about FDDF amplitudes $(M=3)$

Single integral:

$$
\begin{equation*}
I_{t, n}=(-1)^{n-1} \frac{1}{(n-1)!} \prod_{k=1}^{n-1}\left(n \rho_{t+1 t}+k\right) \times\left(\frac{x_{t ; t+1}}{x_{t ; t-1}}\right)^{-n \rho_{t+1 t}}\left(\frac{x_{t ; t+1}}{x_{t-1 ; t+1}}\right)^{-n} \tag{22}
\end{equation*}
$$

Double Integral $(t=r)$:

$$
\begin{equation*}
J_{t, m ; r, n}=\frac{m n}{m+n} \rho_{t+1} t\left(\rho_{t+1}+1\right) I_{t, m} I_{r, n} \tag{23}
\end{equation*}
$$

Double Integral $(t \neq r)$:
$J_{1 n ; 2 m}=(-1)^{n+1} x_{13}^{-n \rho_{31}} x_{23}^{-m \rho_{32}} x_{12}^{-m\left(1+\rho_{21}\right)-m\left(1+\rho_{12}\right)}\left(\frac{x_{13}}{x_{23}}\right)^{-n+m} \sum_{k=1}^{T} k\binom{-n \rho_{31}}{n-k}\binom{-m \rho_{32}}{m-k}$,
$J_{1 n ; 3 m}=(-1)^{m+1} x_{12}^{-n \rho_{21}} x_{23}^{-m \rho_{23}} x_{13}^{-m\left(1+\rho_{31}\right)-m\left(1+\rho_{13}\right)}\left(\frac{x_{12}}{x_{23}}\right)^{-n+m} \sum_{k=1}^{T} k\binom{-n \rho_{21}}{n-k}\binom{-m \rho_{23}}{m-k}$,
$J_{2 n ; 3 m}=(-1)^{n+1} x_{12}^{-n \rho_{12}} x_{13}^{-m \rho_{13}} x_{23}^{-m\left(1+\rho_{32}\right)-m\left(1+\rho_{23}\right)}\left(\frac{x_{12}}{x_{13}}\right)^{-n+m} \sum_{k=1}^{T} k\binom{-n \rho_{12}}{n-k}\binom{-m \rho_{13}}{m-k}$,
where, $\rho_{t ; r}=\underline{k}_{[t]}^{+} / \underline{k}_{[r]}^{+}$and $T=\min (m, n)$.

($N=2$) solution of Virasoro Constraints

At $N=2$ level, there are two DDF states: $\underline{A}_{-2}^{i}\left|\underline{k}_{T}\right\rangle$ and $\underline{A}_{-1}^{i} \underline{A}_{-1}^{j}\left|\underline{k}_{T}\right\rangle$. 1st case:

$$
\begin{align*}
& \underline{A}_{-2}^{i}\left|\underline{k}_{T}\right\rangle=\left(T_{\mu}^{(i)} \alpha_{-2}^{\mu}+S_{\mu \nu}^{(i)} \alpha_{-1}^{\mu} \alpha_{-1}^{\nu}\right)\left|k_{\nu}\right\rangle, \tag{24}\\
& \Longrightarrow T_{\mu}^{(i)}=\Pi_{\mu}^{i}(E) ; S_{\mu \nu}^{(i)}=\Pi_{(\mu}^{i} E_{\nu)}^{ \pm} \frac{2}{\sqrt{2 \alpha^{\prime}} \underline{k}_{T}^{+}}, \tag{25}
\end{align*}
$$

$T_{\mu}^{(i)}$ is transverse, but $S_{\mu \nu}^{(i)}$ is not!

2nd case:

$$
\begin{gather*}
\underline{A}_{-1}^{i} \underline{A}_{-1}^{j}\left|k_{T}\right\rangle=\left(T_{\mu}^{(i j)} \alpha_{-2}^{\mu}+S_{\mu \nu}^{(i j)} \alpha_{-1}^{\mu} \alpha_{-1}^{\nu}\right)\left|k_{\nu}\right\rangle, \tag{26}\\
\Longrightarrow T_{\mu}^{(i j)}=\frac{\delta^{i j}}{2 \sqrt{2 \alpha^{\prime}} \underline{k}_{T-}} E_{\mu}^{+} ; \quad S_{\mu \nu}^{(i j)}=\Pi_{(\mu}^{i} \Pi_{\nu)}^{\frac{j}{i}}+\frac{\delta^{i j}}{2\left(\sqrt{2 \alpha^{\prime}} \underline{k}_{T}^{+}\right)^{2}} E_{\mu}^{ \pm} E_{\nu}^{ \pm} \tag{27}
\end{gather*}
$$

For $i \neq j$ they are TT. But for $i=j$, not TT!

An algebra homomorphism between lightcone and covariant string operators

- For the operator algebras $X=\left\{\alpha_{n(l c)}^{i}\right\}$ and $Y=\left\{\underline{A}_{n}^{i}(E), \underline{\tilde{A}}_{n}^{-}(E)\right\}$ there are infinitely many injective homomorphisms $i(E): X \rightarrow Y$ such that,

$$
\begin{equation*}
\alpha_{n(l c)}^{i} \xrightarrow{i(E)} \underline{A}_{n}^{i}(E) \tag{28}
\end{equation*}
$$

- To be comprehensive, $i(E)$ is inversely related to an isomorphism $f(E): Y / k e r(f) \rightarrow X$ such that,

$$
\begin{align*}
& {\left[\underline{A}_{n}^{i}(E)\right] \xrightarrow{f(E)} \alpha_{n}^{i}} \\
& {\left[\tilde{A}_{n}^{-}(E)\right] \xrightarrow{f(E)} 0} \tag{29}
\end{align*}
$$

- This can be extended to include the zero modes - but they depend on the states of the Fock Space. Hence we have a vector space homomorphism.

